著者
Haoran GENG Masafumi MIYATAKE Qingyuan WANG Pengfei SUN Bo JIN
出版者
The Japan Society of Mechanical Engineers
雑誌
Mechanical Engineering Journal (ISSN:21879745)
巻号頁・発行日
pp.22-00360, (Released:2023-05-23)
参考文献数
16

The timetable of urban rail greatly affects its daily energy consumption. To improve the utilization of renewable energy between trains using timetabling has become an effective way to reduce energy consumption. Previous studies ignore or simplify the modelling of traction power supply network, which failed to accurately describe the flow of energy between trains through the power network. This paper proposed an optimisation method of energy efficiency timetabling considering the power flow of traction power supply network. First, an urban rail transit DC traction network model is established, and the current-vector iterative method is used to characterize the energy consumption. Then, a train timetable optimisation model is proposed to minimize the total energy consumption of the traction network system by adjusting the dwell time and section running time. The genetic algorithm is used to solve the optimisation problem. Finally, simulation result shows that the proposed method can accurately characterize the energy flow and effectively reduce the total energy consumption of the urban rail transit.
著者
Shun Ichikawa Masafumi Miyatake
出版者
The Institute of Electrical Engineers of Japan
雑誌
IEEJ Journal of Industry Applications (ISSN:21871094)
巻号頁・発行日
vol.8, no.4, pp.586-591, 2019-07-01 (Released:2019-07-01)
参考文献数
14
被引用文献数
6

High-frequency train operation with a moving-block signaling system has begun to be introduced mainly in urban rail transit. Under high-frequency operation, however, subsequent trains can repeatedly be forced to slow down according to deceleration pattern generated by the signaling system to avoid collision with preceding trains, which increases the energy consumption of subsequent trains. In this paper, train trajectory optimization with dynamic programming is applied to evaluate the effect of considering preceding trains' trajectory on subsequent trains' energy reduction in a line with moving-block signaling system. The result shows that the method reduces the increase in energy consumption compared to the preceding train 1/3 times more than when not considering the position of the preceding train.