著者
Ken Naito Yu Takahashi Bubpa Chaitieng Kumi Hirano Akito Kaga Kyoko Takagi Eri Ogiso-Tanaka Charaspon Thavarasook Masao Ishimoto Norihiko Tomooka
出版者
日本育種学会
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
pp.16184, (Released:2017-03-04)
被引用文献数
25

Seed size is one of the most important traits in leguminous crops. We obtained a recessive mutant of blackgram that had greatly enlarged leaves, stems and seeds. The mutant produced 100% bigger leaves, 50% more biomass and 70% larger seeds though it produced 40% less number of seeds. We designated the mutant as multiple-organ-gigantism (mog) and found the mog phenotype was due to increase in cell numbers but not in cell size. We also found the mog mutant showed a rippled leaf (rl) phenotype, which was probably caused by a pleiotropic effect of the mutation. We performed a map-based cloning and successfully identified an 8 bp deletion in the coding sequence of VmPPD gene, an orthologue of Arabidopsis PEAPOD (PPD) that regulates arrest of cell divisions in meristematic cells. We found no other mutations in the neighboring genes between the mutant and the wild type. We also knocked down GmPPD genes and reproduced both the mog and rl phenotypes in soybean. Controlling PPD genes to produce the mog phenotype is highly valuable for breeding since larger seed size could directly increase the commercial values of grain legumes.
著者
Naoya Yamaguchi Yumi Sato Fumio Taguchi-Shiobara Kazuki Yamashita Michio Kawasaki Masao Ishimoto Mineo Senda
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
vol.73, no.2, pp.204-211, 2023 (Released:2023-06-06)
参考文献数
32

Low temperatures after flowering cause seed cracking (SC) in soybean. Previously, we reported that proanthocyanidin accumulation on the dorsal side of the seed coat, controlled by the I locus, may lead to cracked seeds; and that homozygous IcIc alleles at the I locus confer SC tolerance in the line Toiku 248. To discover new genes related to SC tolerance, we evaluated the physical and genetic mechanisms of SC tolerance in the cultivar Toyomizuki (genotype II). Histological and texture analyses of the seed coat revealed that the ability to maintain hardness and flexibility under low temperature, regardless of proanthocyanidin accumulation in the dorsal seed coat, contributes to SC tolerance in Toyomizuki. This indicated that the SC tolerance mechanism differed between Toyomizuki and Toiku 248. A quantitative trait loci (QTL) analysis of recombinant inbred lines revealed a new, stable QTL related to SC tolerance. The relationship between this new QTL, designated as qCS8-2, and SC tolerance was confirmed in residual heterozygous lines. The distance between qCS8-2 and the previously identified QTL qCS8-1, which is likely the Ic allele, was estimated to be 2–3 Mb, so it will be possible to pyramid these regions to develop new cultivars with increased SC tolerance.
著者
Shizen Ohnishi Noriyuki Miyake Toru Takeuchi Fumiko Kousaka Satoshi Hiura Osamu Kanehira Miki Saito Takashi Sayama Ayako Higashi Masao Ishimoto Yoshinori Tanaka Shohei Fujita
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
vol.61, no.5, pp.618-624, 2012 (Released:2012-02-04)
参考文献数
30
被引用文献数
11 17 7

Soybean dwarf virus (SbDV) causes serious dwarfing, yellowing and sterility in soybean (Glycine max). The soybean cv. Adams is tolerant to SbDV infection in the field and exhibits antibiosis to foxglove aphid (Aulacorthum solani), which transmits SbDV. This antibiosis (termed “aphid resistance”) is required for tolerance to SbDV in the field in segregated progenies of Adams. A major quantitative trait locus, Raso1, is reported for foxglove aphid resistance. Our objectives were to fine map Raso1 and to reveal whether Raso1 alone is sufficient to confer both aphid resistance and SbDV tolerance. We introduced Raso1 into cv. Toyomusume by backcrossing and investigated the degree of aphid antibiosis to foxglove aphid and the degree of tolerance to SbDV in the field. All Raso1-introduced backcross lines showed aphid resistance. Interestingly, only one Raso1-introduced backcross line (TM-1386) showed tolerance to SbDV in the field. The results demonstrated Raso1 alone is sufficient to confer aphid resistance but insufficient for SbDV tolerance. Tolerance to SbDV was indicated to require additional gene(s) to Raso1. Additionally, Raso1 was mapped to a 63-kb interval on chromosome 3 of the Williams 82 sequence assembly (Glyma1). This interval includes a nucleotide-binding site–leucine-rich repeat encoding gene and two other genes in the Williams 82 soybean genome sequence.