著者
Norio Motohashi Matthew S. Alexander Louis M. Kunkel
出版者
一般社団法人日本体力医学会
雑誌
The Journal of Physical Fitness and Sports Medicine (ISSN:21868131)
巻号頁・発行日
vol.1, no.1, pp.151-154, 2012-05-25 (Released:2012-08-22)
参考文献数
42
被引用文献数
2

Skeletal muscle is the most abundant tissue in the mammalian body and is composed of multinucleated fibers that contract to generate force and movement. In addition, skeletal muscle has the ability to regenerate following severe damage by exercise, toxins or disease. Regeneration is possible because of the presence of mononucleated precursor cells called satellite cells. After injury, satellite cells are activated, proliferate, and fuse with the damaged fibers or fuse together to form new myofibers. A fraction of satellite cells self-renew and behave as muscle stem cells. Although satellite cells are the main players in muscle regeneration, a number of other cell types are also recruited to form new fibers or to modulate the behavior of satellite cells. Here we present an overview of current knowledge of regeneration focusing on muscle satellite cells and other stem cells and discussing promising stem cell therapy for diseases such as muscular dystrophy.