著者
Md Mehedi Iqbal Masahiko Nishimura Md. Nurul Haider Masayoshi Sano Minoru Ijichi Kazuhiro Kogure Susumu Yoshizawa
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.36, no.4, pp.ME21037, 2021 (Released:2021-10-13)
参考文献数
81
被引用文献数
10

Zostera marina (eelgrass) is a widespread seagrass species that forms diverse and productive habitats along coast lines throughout much of the northern hemisphere. The present study investigated the microbial consortia of Z. marina growing at Futtsu clam-digging beach, Chiba prefecture, Japan. The following environmental samples were collected: sediment, seawater, plant leaves, and the root-rhizome. Sediment and seawater samples were obtained from three sampling points: inside, outside, and at the marginal point of the eelgrass bed. The microbial composition of each sample was analyzed using 16S ribosomal gene amplicon sequencing. Microbial communities on the dead (withered) leaf surface markedly differed from those in sediment, but were similar to those in seawater. Eelgrass leaves and surrounding seawater were dominated by the bacterial taxa Rhodobacterales (Alphaproteobacteria), whereas Rhodobacterales were a minor group in eelgrass sediment. Additionally, we speculated that the order Sphingomonadales (Alphaproteobacteria) acts as a major degrader during the decomposition process and constantly degrades eelgrass leaves, which then spread into the surrounding seawater. Withered eelgrass leaves did not accumulate on the surface sediment because they were transported out of the eelgrass bed by wind and residual currents unique to the central part of Tokyo Bay.
著者
Minoru Ijichi Gyo Itani Hiroshi Ueda
出版者
日本プランクトン学会、日本ベントス学会
雑誌
Plankton and Benthos Research (ISSN:18808247)
巻号頁・発行日
vol.12, no.3, pp.145-150, 2017-08-22 (Released:2017-08-24)
参考文献数
26
被引用文献数
4

The life cycle and precopulatory mate guarding behavior of the poecilostomatoid copepod Goidelia japonica associated with the spoon worm Urechis unicinctus (Echiura) are described based on specimens from 19 worms collected from western Japan. A total of 676 copepods were collected from the host’s rectum (494 copepods) and body surface (182 copepods). Copepod numbers were significantly correlated with host weight. Copepods in the rectum consisted almost completely of copepodids (35%) and adult males (65%), with only one non-ovigerous adult female recorded. In contrast, those on the body surface were all adult males (24%) or females (76%), of which 58% were ovigerous. No nauplii or CI occurred. In the rectum, 36% of the adult males guarded 67% of the copepodids, consisting of CII–CV. From these results, their life cycle is considered as follows: nauplii and CI live as plankton; just before or after molting to CII, they enter the host’s rectum and females are probably soon guarded by males; they grow up to CV there; CV females guarded by males move to the body surface just before the final molt; on the body surface females molt to adults and spawn eggs. Guarding the first symbiotic stage (CII) is a unique precopulatory behavior for symbiotic poecilostomatoid copepods. This can be explained from the viewpoint of evolutionary resolution of the intersexual conflict and advantage for early copepodids in precopula.