著者
Suguru SAITO Duo-Yao CAO Alato OKUNO Xiaomo LI Zhenzi PENG Musin KELEL Noriko M TSUJI
出版者
BMFH Press
雑誌
Bioscience of Microbiota, Food and Health (ISSN:21863342)
巻号頁・発行日
vol.41, no.4, pp.185-194, 2022 (Released:2022-10-05)
参考文献数
53
被引用文献数
3

Creatine is an organic compound which is utilized in biological activities, especially for adenosine triphosphate (ATP) production in the phosphocreatine system. This is a well-known biochemical reaction that is generally recognized as being mainly driven in specific parts of the body, such as the skeletal muscle and brain. However, our report shows a novel aspect of creatine utilization and ATP synthesis in innate immune cells. Creatine supplementation enhanced immune responses in neutrophils, such as cytokine production, reactive oxygen species (ROS) production, phagocytosis, and NETosis, which were characterized as antibacterial activities. This creatine-induced functional upregulation of neutrophils provided a protective effect in a murine bacterial sepsis model. The mortality rate in mice challenged with Escherichia coli K-12 was decreased by creatine supplementation compared with the control treatment. Corresponding to this decrease in mortality, we found that creatine supplementation decreased blood pro-inflammatory cytokine levels and bacterial colonization in organs. Creatine supplementation significantly increased the cellular ATP level in neutrophils compared with the control treatment. This ATP increase was due to the phosphocreatine system in the creatine-treated neutrophils. In addition, extracellular creatine was used in this ATP synthesis, as inhibition of creatine uptake abolished the increase in ATP in the creatine-treated neutrophils. Thus, creatine is an effective nutrient for modifying the immunological function of neutrophils, which contributes to enhancement of antibacterial immunity.
著者
Suguru SAITO Musin KELEL
出版者
BMFH Press
雑誌
Bioscience of Microbiota, Food and Health (ISSN:21863342)
巻号頁・発行日
vol.42, no.1, pp.94-99, 2023 (Released:2023-01-01)
参考文献数
37

Angiogenesis is a highly regulated biological event and requires the participation of neutrophils, which are innate immune cells, to initiate the systematic responses. Some strains of lactic acid bacteria (LAB) can be used for probiotics that provide functional modifications in our immune systems. Here, we show that oral administration of Lacticaseibacillus casei ATCC393 promoted inflammatory angiogenesis accompanied by enhanced neutrophil activity. Heat-killed L. casei (HK-LC) administration improved angiogenesis in a murine hind-limb ischemia (HLI) model. The recruitment and activity of neutrophils were enhanced by HK-LC administration under the HLI conditions. Our results provide novel evidence of an immunological contribution of LAB uptake in the prevention of or recovery from cardiovascular diseases.