著者
Junichi MINAMI Noriyuki IWABUCHI Miyuki TANAKA Koji YAMAUCHI Jin-zhong XIAO Fumiaki ABE Naoki SAKANE
出版者
BMFH Press
雑誌
Bioscience of Microbiota, Food and Health (ISSN:21863342)
巻号頁・発行日
vol.37, no.3, pp.67-75, 2018 (Released:2018-07-26)
参考文献数
43
被引用文献数
74

Accumulating evidence suggests a relationship between the gut microbiota and the development of obesity, indicating the potential of probiotics as a therapeutic approach. Bifidobacterium breve B-3 has been shown to exert anti-obesity effects in high-fat diet-induced obese mice. In the present study, the anti-obesity effects of the consumption of B. breve B-3 by healthy pre-obese (25 ≤ BMI < 30) adults were investigated in a randomized, double-blind, placebo-controlled trial (trial registration: UMIN-CTR No. 000023919; preregistered on September 2, 2016). Eighty participants were randomized to receive placebo or B. breve B-3 capsules (2 × 1010 CFU/day) daily for 12 weeks. The visceral fat area significantly increased at weeks 4 and 8 in the placebo group only; no significant change was observed in the B-3 group. Body fat mass and percent body fat were significantly lower in the B-3 group than in the placebo group at weeks 8 and 12 (p<0.05, ANCOVA adjusted with baseline values). Although no significant differences were observed in blood parameters between the groups, the intake of B. breve B-3 slightly decreased triglyceride levels and improved HDL cholesterol from the baseline. No serious adverse effects were noted in either group. These results suggest that the probiotic strain B. breve B-3 has potential as a functional food ingredient to reduce body fat in healthy pre-obese individuals.
著者
Shuzo ORIKASA Kazumi NABESHIMA Noriyuki IWABUCHI Jin-Zhong XIAO
出版者
BMFH出版会
雑誌
Bioscience of Microbiota, Food and Health (ISSN:21863342)
巻号頁・発行日
vol.35, no.3, pp.141-145, 2016 (Released:2016-07-28)
参考文献数
28
被引用文献数
7

Schizophrenia is a chronic psychiatric illness. Disruption of the dopaminergic system has been suggested to be the pathogenic cause of this disease. The effect of Bifidobacterium longum BB536 (BB536) on schizophrenic behavior was investigated in an animal model. Daily administration of BB536 (109 CFU/mouse, p.o. for 2 weeks) was found to reduce rearing behavior augmented by the dopamine receptor agonist apomorphine and to decrease the resting level of plasma corticosterone and the ratio of kynurenine to tryptophan. These results suggest the potential of BB536 for supplemental treatment of the symptoms of schizophrenia.