- 著者
-
長友 康行
高橋 正郎
古賀 勇
Oscar Macia
- 出版者
- 明治大学
- 雑誌
- 基盤研究(C)
- 巻号頁・発行日
- 2014-04-01
グラスマン多様体への調和写像に関する一般化されたdo Carmo-Wallch理論のさらなる一般化を定義域がコンパクトリーマン多様体の場合に達成できた。これにより、インスタントンのADHM構成法と類似の調和写像のモジュライ空間の記述が可能となった。例として、複素射影直線から複素射影空間の複素2次超曲面への正則等長写像のモジュライを記述できた。さらに、モジュライが葉層構造を持つことが示され、その葉体はケーラー商で与えられる。また、複素射影直線から2次元部分空間のなす複素グラスマン多様体への正則同変写像の分類にも成功した。いずれの場合もモジュライのコンパクト化には幾何学的な解釈が与えられる。