著者
松尾 豊 PRENDINGER HELMU 中山 浩太郎
出版者
東京大学
雑誌
新学術領域研究(研究領域提案型)
巻号頁・発行日
2016-06-30

(i)記号処理を組み込んだDeep Q Networkの構成に関しては、低次元の状態表現を獲得する手法に関する研究を進めた。具体的には、部分的な観測を扱うニューラルネットワークのモデルとして,人間の視覚的注意を模倣した注意機構(attention mechanism)を持つモデルが提案されている。しかし,これらのモデルでは,注意機構の学習がタスクから定義される外的な報酬信号を用いた強化学習によって行われており,外部からの報酬信号が得られない問題設定下では注意機構の学習を行うことができない。そこで、特定のタスクに依存しない方法で注意機構を学習させ,状態の予測を行う手法を構築した。また、よりロバストな状態表現の学習を行うため、深層敵対的強化学習(DARL)を複数のドメインに対して適用する研究も行った。その結果を、深層学習に関する国際会議のワークショップで発表した。次に (ii) 文章からの画像の生成モデルを用いた、画像空間での演算処理 に関して、文章(ソース文)から画像を生成し、それを別の言語での文章(ターゲット文)に変換する方式のニューラル機械翻訳(NMT)を実現した。単純に行うと精度の問題があるため、ソース文からターゲット文の変換を行うseq2seqのモデルに、画像の情報を加えるというアプローチをとった。すなわち、テキストと画像が持つ意味情報を,潜在変数として陽に含むニューラル翻訳モデルを提案した。実験では,Multi30kという,画像とそれに対応する英独の対訳コーパスを用い,提案モデルとの比較を行った.標準的な翻訳精度評価指標である METEORスコアにおいて全てのベースラインを上回った.また、この研究の過程において、seq2seqの学習時により密な報酬を与えることで精度がよくなることを発見し、 その結果を、深層学習に関する国際会議のワークショップで発表した。