著者
RADHAKRISHNA Basivi SAIKRANTHI Kadiri RAO Thota Narayana
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-030, (Released:2020-03-26)
被引用文献数
15

Variations in raindrop size distribution (DSD) during the southwest monsoon (SWM) season over different climatic regions in the Indian subcontinent and adjoining seas are studied in this paper using five years (2014-2018) of global precipitation measurement dual-frequency precipitation radar derived DSDs. The rain rate (R) stratified DSD measurements show clearly that land, sea, and orography differ in their mass-weighted mean diameter (Dm) values. Irrespective of R, Dm values of deep rain were found to be larger in continental rain than in maritime and orographic rain. However, for shallow storms, the Dm values were smaller for continental rain than for orographic and maritime rain. Based on the Dm values and their variations with R of the deep systems, the regions could be categorized into four groups, within which the Dm values were nearly equal: (1) the northwest India (NWI) and the southeast peninsular India (SEPI); (2) the foothills of the Himalayas (FHH) and the central India (CI); (3) the northeast India (NEI) and the Bay of Bengal (BOB); and (4) the Arabian Sea (AS), the Western Ghats (WG), and the Myanmar coast (MC). Compared to other geographical regions of the Indian subcontinent, the Dm values of the deep systems were the largest over NWI and SEPI and the smallest over the WG, MC, and AS; while for shallow systems, the Dm values were the largest over the BOB and AS and the smallest over the SEPI and NWI regions. Though the cloud drops were smaller over the continental regions, the raindrops were larger than in the maritime and orographic rain regions. The microphysical and dynamical processes that occur during precipitation play a vital role in altering the DSDs of continental rain.