著者
Satoru Tsugawa Norihiro Kanda Moritaka Nakamura Tatsuaki Goh Misato Ohtani Taku Demura
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.37, no.4, pp.443-450, 2020-12-25 (Released:2020-12-25)
参考文献数
10
被引用文献数
2 4

Plant shoots can bend upward against gravity, a behavior known as shoot gravitropism. The conventional quantification of shoot bending has been restricted to measurements of shoot tip angle, which cannot fully describe the spatio-temporal bending process. Recently, however, advanced imaging analyses have been developed to quantify in detail the spatio-temporal changes in inclination angle and curvature of the shoot. We used one such method (KymoRod) to analyze the gravitropism of the Arabidopsis thaliana inflorescence stem, and successfully extracted characteristics that capture when and where bending occurs. Furthermore, we implemented an elastic spring theoretical model and successfully determined best fitted parameters that may explain typical bending behaviors of the inflorescence stem. Overall, we propose a data-model combined framework to quantitatively investigate shoot gravitropism in plants.
著者
Marcel Pascal Beier Satoru Tsugawa Taku Demura Toru Fujiwara
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.37, no.4, pp.423-428, 2020-12-25 (Released:2020-12-25)
参考文献数
25
被引用文献数
1 4

While it is known that plant roots can change their shapes to the stress direction, it remains unclear if the root orientation can change as a means for mechanical reinforcement. When stress in form of a unidirectional vibration is applied to cuttings of Populus nigra for 5 min a day over a period of 20 days, the root system architecture changes. The contribution of roots with a diameter larger than 0.04 cm increases, while the allocation to roots smaller than 0.03 cm decreases. In addition to the root diameter allocation, the root orientation in the stem proximity was analyzed by appearance and with a nematic tensor analysis in an attempt to calculate the average root orientation. The significant different allocation to roots with a larger diameter, and the tendency of roots to align in the vicinity of the stress axis (not significantly different), are indicating a mechanical reinforcement to cope with the received strain. This work indicates an adaptive root system architecture and a possible adaptive root orientation for mechanical reinforcement.