著者
Hidetomo Yokoo Eiichi Yamamoto Sayaka Masada Nahoko Uchiyama Genichiro Tsuji Takashi Hakamatsuka Yosuke Demizu Ken-ichi Izutsu Yukihiro Goda
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.69, no.9, pp.872-876, 2021-09-01 (Released:2021-09-01)
参考文献数
23
被引用文献数
13

N-Nitrosodimethylamine (NDMA) is a probable human carcinogen. This study investigated the root cause of the presence of NDMA in ranitidine hydrochloride. Forced thermal degradation studies of ranitidine hydrochloride and its inherent impurities (Imps. A, B, C, D, E, F, G, H, I, J, and K) listed in the European and United States Pharmacopeias revealed that in addition to ranitidine, Imps. A, C, D, E, H, and I produce NDMA at different rates in a solid or an oily liquid state. The rate of NDMA formation from amorphous Imps. A, C, and E was 100 times higher than that from crystalline ranitidine hydrochloride under forced degradation at 110 °C for 1 h. Surprisingly, crystalline Imp. H, bearing neither the N,N-dialkyl-2-nitroethene-1,1-diamine moiety nor a dimethylamino group, also generated NDMA in the solid state, while Imp. I, as an oily liquid, favorably produced NDMA at moderate temperatures (e.g., 50 °C). Therefore, strict control of the aforementioned specific impurities in ranitidine hydrochloride during manufacturing and storage allows appropriate control of NDMA in ranitidine and its pharmaceutical products. Understanding the pathways of the stability related NDMA formation enables improved control of the pharmaceuticals to mitigate this risk.
著者
Yasuhiro Abe Eiichi Yamamoto Hiroyuki Yoshida Akiko Usui Naomi Tomita Hitomi Kanno Sayaka Masada Hidetomo Yokoo Genichiro Tsuji Nahoko Uchiyama Takashi Hakamatsuka Yosuke Demizu Ken-ichi Izutsu Yukihiro Goda Haruhiro Okuda
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
pp.c20-00431, (Released:2020-08-08)
参考文献数
28
被引用文献数
20

The purpose of this study was to elucidate the effect of high-temperature storage on the stability of ranitidine, specifically with respect to the potential formation of N-nitrosodimethylamine (NDMA), which is classified as a probable human carcinogen. Commercially available ranitidine reagent powders and formulations were stored under various conditions, and subjected to LC-MS/MS analysis. When ranitidine tablets from two different brands (designated as tablet A and tablet B) were stored under accelerated condition (40°C with 75% relative humidity), following the drug stability guidelines issued by the International Conference on Harmonisation (ICH-Q1A), for up to 8 weeks, the amount of NDMA in them substantially increased from 0.19 to 116 ppm and from 2.89 to 18 ppm, respectively. The formation of NDMA that exceeded the acceptable daily intake limit (0.32 ppm) at the temperature used under accelerated storage conditions clearly highlights the risk of NDMA formation in ranitidine formulations when extrapolated to storage under ambient conditions. A forced-degradation study under the stress condition (60°C for 1 week) strongly suggested that environmental factors such as moisture and oxygen are involved in the formation of NDMA in ranitidine formulations. Storage of ranitidine tablets and reagent powders at the high temperatures also increased the amount of nitrite, which is considered one of the factors influencing NDMA formation. These data indicate the necessity of controlling/monitoring stability-related factors, in addition to controlling impurities during the manufacturing process, in order to mitigate nitrosamine-related health risks of certain pharmaceuticals.
著者
Sayaka Masada-Atsumi Yukie Kumeta Yutaka Takahashi Takashi Hakamatsuka Yukihiro Goda
出版者
公益社団法人日本薬学会
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.37, no.3, pp.454-460, 2014-03-01 (Released:2014-03-01)
参考文献数
23
被引用文献数
5 18 3

Despite the increasing sales of black cohosh (the dried rhizome and root of Cimicifuga racemosa L.) in the world herbal market, these products have continuous adulteration issues. The botanical authenticity of the black cohosh products is the first important step for ensuring their quality, safety and efficacy. In this study, we genetically identified the botanical sources of 10 black cohosh products and 5 Cimicifuga Rhizome crude drugs of Japanese Pharmacopoeia grade, and analyzed the metabolic profiling of 25 black cohosh products using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Consequently, we found that C. dahurica and possibly C. foetida are misused as sources of the black cohosh products and in some cases, the extracts of black cohosh were adulterated with the plant materials of C. dahurica. We demonstrated that these three species can be distinguished by three marker compounds in a specific mass range. These results must be helpful in establishing regulations for the safe use of the black cohosh products.