著者
Shintaroh Kubo Kenichi Umeda Noriyuki Kodera Shoji Takada
出版者
The Biophysical Society of Japan
雑誌
Biophysics and Physicobiology (ISSN:21894779)
巻号頁・発行日
vol.20, no.1, pp.e200006, 2023 (Released:2023-02-14)
参考文献数
29
被引用文献数
4

The high-speed atomic force microscopy (HS-AFM) is a unique and prominent method to observe structural dynamics of biomolecules at single molecule level at near-physiological condition. To achieve high temporal resolution, the probe tip scans the stage at high speed which can cause the so-called parachuting artifact in the HS-AFM images. Here, we develop a computational method to detect and remove the parachuting artifact in HS-AFM images using the two-way scanning data. To merge the two-way scanning images, we employed a method to infer the piezo hysteresis effect and to align the forward- and backward-scanning images. We then tested our method for HS-AFM videos of actin filaments, molecular chaperone, and duplex DNA. Together, our method can remove the parachuting artifact from the raw HS-AFM video containing two-way scanning data and make the processed video free from the parachuting artifact. The method is general and fast so that it can easily be applied to any HS-AFM videos with two-way scanning data.
著者
Keisuke Inoue Shoji Takada Tsuyoshi Terakawa
出版者
The Biophysical Society of Japan
雑誌
Biophysics and Physicobiology (ISSN:21894779)
巻号頁・発行日
vol.19, pp.e190015, 2022 (Released:2022-05-11)
参考文献数
43
被引用文献数
2

DNA mismatches are frequently generated by various intrinsic and extrinsic factors including DNA replication errors, oxygen species, ultraviolet, and ionizing radiation. These mismatches should be corrected by the mismatches repair (MMR) pathway to maintain genome integrity. In the Escherichia coli (E. coli) MMR pathway, MutS searches and recognizes a base-pair mismatch from millions of base-pairs. Once recognized, ADP bound to MutS is exchanged with ATP, which induces a conformational change in MutS. Previous single-molecule fluorescence microscopy studies have suggested that ADP-bound MutS temporarily slides along double-stranded DNA in a rotation-coupled manner to search a base-pair mismatch and so does ATP-bound MutS in a rotation-uncoupled manner. However, the detailed structural dynamics of the sliding remains unclear. In this study, we performed coarse-grained molecular dynamics simulations of the E. coli MutS bound on DNA in three different conformations: ADP-bound (), ATP-bound open clamp (), and ATP-bound closed clamp () conformations. In the simulations, we observed conformation-dependent diffusion of MutS along DNA. and diffused along DNA in a rotation-coupled manner with rare and frequent groove-crossing events, respectively. In the groove-crossing events, MutS overcame an edge of a groove and temporarily diffused in a rotation-uncoupled manner. It was also indicated that mismatch searches by is inefficient in terms of mismatch checking even though it diffuses along DNA and reaches unchecked regions more rapidly than .