著者
Yoshimi Nakano Maki Kawai Moeca Arai Sumire Fujiwara
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.40, no.4, pp.337-344, 2023-12-25 (Released:2023-12-25)
参考文献数
26

Correct flower organ formation at the right timing is one of the most important strategies for plants to achieve reproductive success. Ectopic overexpression of LATE FLOWERING (LATE) is known to induce late flowering, partly through suppressing expression of the florigen-encoding gene FLOWERING LOCUS T (FT) in Arabidopsis. LATE is one of the C2H2 zinc finger transcription factors, and it has a canonical transcriptional repression domain called the ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif at the end of its C terminus. Therefore, LATE is considered a transcriptional repressor, but its molecular function remains unclear. Our genome-edited late mutants exhibited no distinct phenotype, even in flowering, indicating the presence of redundancy from other factors. To reveal the molecular function of LATE and factors working with it, we investigated its transcriptional activity and interactions with other proteins. Transactivation activity assay showed that LATE possesses transcriptional repression ability, which appears to be attributable to both the EAR motif and other sequences. Yeast two-hybrid assay showed the EAR motif-mediated interaction of LATE with TOPLESS, a transcriptional corepressor. Moreover, LATE could also interact with CRABS CLAW (CRC), one of the most important regulators of floral meristem determinacy, through sequences in LATE other than the EAR motif. Our findings demonstrated the possibility that LATE can form a transcriptional repression complex with CRC for floral meristem determinacy.
著者
Sumire Fujiwara Keiko Kigoshi Nobutaka Mitsuda Kaoru Suzuki Masaru Ohme-Takagi
出版者
Japanese Society for Plant Cell and Molecular Biology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
pp.14.0121a, (Released:2014-03-20)
参考文献数
58
被引用文献数
5 7

Proper gene expression regulated by transcription factors is essential for plants to achieve proper growth and development. However, the biological functions of many transcription factors remain largely unknown. Furthermore, although there are transcription factors which possess a plant-specific repression domain(s), their biological functions and whether such transcription factors function as transcriptional repressors are unclear. Thus, aiming for searching clues to understand their functions, we generated transgenic plants in which a putative transcriptional repressor fused with a VP16 viral trans-activation domain was expressed constitutively. Several plants with strong morphological phenotypes such as leaf and flower development defects were isolated from those lines expressing potential transcriptional repressors with unknown functions, giving the clue to reveal the yet-to-be analyzed functions of each protein. Reversal of function of the well-known transcriptional and floral repressor SHORT VEGETATIVE PHASE by VP16 fusion was observed, exemplifying successful functional reversion by this system. Plants constitutively expressing VP16 fused WUSCHEL, which is known to function both as a transcriptional activator and repressor, showed both phenotypes reported in its overexpression and loss-of-function lines. Taken together, our data provide examples showing the efficacy of VP16 fusion to provide helpful information to uncover the unknown functions of potential transcriptional repressors. This technique could also be effective to produce “super plants” which obtained strong and useful traits for application by strongly activating genes which are usually silent.