著者
OSE Tomoaki ENDO Hirokazu TAKAYA Yuhei MAEDA Shuhei NAKAEGAWA Toshiyuki
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2022-032, (Released:2022-04-14)
被引用文献数
3

Robust and uncertain sea-level pressure patterns over summertime East Asia in the future global warming projections and their causes are studied by applying the inter-model empirical orthogonal function (EOF) analysis to the multi-model experiments in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and focusing common features with the previous CMIP5 analysis. The ensemble average and the first to third EOF modes associated with future pressure changes are similar to the corresponding ones from CMIP5. The first and second modes represent strengthened and weakened high pressure systems in subtropical and northern East Asia, respectively. The third mode is the reverse anomaly of the climatological pressure pattern over summertime East Asia, indicating weakened southerly monsoon winds. The second mode pattern makes positive contributions to almost all the CMIP6 future pressure changes, representing a robust future projection pattern. The robust mode is the result of surface warming over the northern continents and neighboring seas that is stronger than the global average. The first and third modes are considered to be uncertain (but major) patterns in the ensemble projections because the signs of their contributions to the future changes are dependent on the model used. Suppressed vertical motion over the equatorial (northern) Indian Ocean caused by the vertically stabilized atmosphere under the global warming scenario is the source of the first (third) mode, together with the counter vertical motion anomaly over the equatorial (northern) Pacific. The above characteristics of the modes are essentially similar to those identified in the CMIP5 analysis while different sea surface temperature anomalies are related to the secondary structures of the modes. Some uncertainties in the future projections can be attributed to the systematic differences in the model climatology of the present-day precipitation, which determines the distribution of the suppressed vertical motion under the future warmer climate.
著者
OSE Tomoaki TAKAYA Yuhei MAEDA Shuhei NAKAEGAWA Toshiyuki
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-047, (Released:2020-07-01)
被引用文献数
6

The southerly surface wind index over the summertime East Asia (SWI) is strengthened in the future in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). However, the differences among the models are much larger than the ensemble average. The empirical orthogonal function (EOF) analysis is applied to the future changes in the East Asian surface pressure pattern responsible for the SWI. The ensemble average and five EOF modes for the pressure patterns and the associated precipitation changes are identified, and their possible sources are examined. The CMIP5 ensemble mean change in the summertime Asia Pacific surface pressure pattern possesses the characteristics of the first to third modes. The first and second mode components contribute to the positive SWI in the future, but are cancelled mostly by the third mode component. The first mode is high surface pressure anomalies over low Asia Pacific sea surface temperature. The second mode is related to warm temperature anomalies over the Northern Hemisphere continents and the increased equatorial Pacific precipitation. The large model dependence of the SWI is created by the third mode, which represents the weak Pacific High in northern East Asia and is characterized with suppressed vertical motions over the northern Indian and Pacific oceans. The fourth mode is the Okhotsk High. The fifth mode represents the east–west contrast of the southern East Asian surface pressure anomalies and is associated with the Northern Hemisphere ocean temperatures. The fourth and fifth modes feature the mean projection using the 10 models reproducing an accurate present-day summertime East Asian climatology.  The mode-related suppressed vertical motions in global warming reflect the present-day vertical motion (i.e., precipitation) climatology; hence, the future increase/decrease in the SWI tends to be projected by models simulating the relatively small/large Asia Pacific monsoon precipitation over the tropical oceans, except near the mountains, in the present-day model climatology.