著者
Atsushi TAGAMI Takuya MIYASAKA Masaki SUZUKI Chikara SASAKI
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE TRANSACTIONS on Communications (ISSN:09168516)
巻号頁・発行日
vol.E106-B, no.12, pp.1267-1274, 2023-12-01
被引用文献数
1

Recently, there has been a surge of interest in Artificial Intelligence (AI) and its applications have been considered in various fields. Mobile networks are becoming an indispensable part of our society, and are considered as one of the promising applications of AI. In the Beyond 5G/6G era, AI will continue to penetrate networks and AI will become an integral part of mobile networks. This paper provides an overview of the collaborations between networks and AI from two categories, “AI for Network” and “Network for AI,” and predicts mobile networks in the B5G/6G era. It is expected that the future mobile network will be an integrated infrastructure, which will not only be a mere application of AI, but also provide as the process infrastructure for AI applications. This integration requires a driving application, and the network operation is one of the leading candidates. Furthermore, the paper describes the latest research and standardization trends in the autonomous networks, which aims to fully automate network operation, as a future network operation concept with AI, and discusses research issues in the future mobile networks.
著者
Takuya MIYASAKA Yuichiro HEI Takeshi KITAHARA
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE Transactions on Information and Systems (ISSN:09168532)
巻号頁・発行日
vol.E104.D, no.5, pp.617-627, 2021-05-01 (Released:2021-05-01)
参考文献数
37
被引用文献数
1

Application-aware Traffic Engineering (TE) plays a crucial role in ensuring quality of services (QoS) for recently emerging applications such as AR, VR, cloud gaming, and connected vehicles. While a deterministic application-aware TE is required for these mission-critical applications, a negotiation procedure between applications and network operators needs to undergo major simplification to fulfill the scalability of the application based on emerging microservices and container-based architecture. In this paper, we propose a NetworkAPI framework which allows an application to indicate a desired TE behavior inside IP packets by leveraging Segment Routing over IPv6 (SRv6). In the NetworkAPI framework, the TE behavior provided by the network operator is expressed as an SRv6 Segment Identifier (SID) in the form of a 128-bit IPv6 address. Because the IPv6 address of an SRv6 SID is distributed using IP anycast, the application can utilize the unchanged SRv6 SID regardless of the application's location, as if the application controls an API on the transport network. We implement a prototype of the NetworkAPI framework on a Linux kernel. On the prototype implementation, a basic packet forwarding performance is evaluated to demonstrate the feasibility of our framework.