著者
Shintaro Ichikawa Utaroh Motosugi Kazuyuki Sato Tatsuya Shimizu Tetsuya Wakayama Hiroshi Onishi
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2020-0064, (Released:2020-08-28)
参考文献数
30
被引用文献数
11

Purpose: To investigate whether shortened acquisition or multiple arterial phase acquisition improves image quality of the arterial phase compared with conventional protocol.Methods: This retrospective study was approved by the relevant Institutional Review Board. A total of 615 consecutive patients who underwent gadoxetate disodium-enhanced MRI including one of the following three sequences in three different periods were included: (i) conventional liver acquisition with volume acceleration (LAVA) (between October 2014 and January 2015, n = 149), (ii) Turbo-LAVA (between March and August 2016, n = 216), and (iii) differential sub-sampling with Cartesian ordering (DISCO) (between January and September 2015, n = 250). We monitored the respiratory bellows waveform during breath holding for each patient and recorded breath-hold fidelity of the patients. Two radiologists independently evaluated the degree of respiratory artifact and scan timing on the arterial phase and compared them between the three protocols (i.e., conventional LAVA, Turbo-LAVA, and DISCO), with conventional LAVA as control.Results: The ratio of patients with breath-hold failure was not significantly different among the three protocols (P = 0.6340 and 0.1085). Respiratory artifact was significantly lower in DISCO than in conventional LAVA (P = 0.0424), while there was no significant difference between Turbo-LAVA and conventional LAVA (P = 0.2593). The ratio of adequate scan timing and diagnosable image defined as no or mild artifact and adequate scan timing were higher in DISCO than in conventional LAVA (P = 0.0025 and 0.0019), while there was no significant difference between Turbo-LAVA and conventional LAVA (P = 0.0780 and 0.0657).Conclusion: Compared with conventional protocol, multiple arterial phase acquisition (DISCO) obtained a higher number of diagnosable images by reducing respiratory motion artifact and optimizing the scan timing of arterial phase.
著者
Masatoshi Iwamura Satoru Ide Kenya Sato Akihisa Kakuta Soichiro Tatsuo Atsushi Nozaki Tetsuya Wakayama Tatsuya Ueno Rie Haga Misako Kakizaki Yoko Yokoyama Ryoichi Yamauchi Fumiyasu Tsushima Koichi Shibutani Masahiko Tomiyama Shingo Kakeda
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2022-0112, (Released:2023-03-16)
参考文献数
15
被引用文献数
4

Purpose: Brain MRI with high spatial resolution allows for a more detailed delineation of multiple sclerosis (MS) lesions. The recently developed deep learning-based reconstruction (DLR) technique enables image denoising with sharp edges and reduced artifacts, which improves the image quality of thin-slice 2D MRI. We, therefore, assessed the diagnostic value of 1 mm-slice-thickness 2D T2-weighted imaging (T2WI) with DLR (1 mm T2WI with DLR) compared with conventional MRI for identifying MS lesions.Methods: Conventional MRI (5 mm T2WI, 2D and 3D fluid-attenuated inversion recovery) and 1 mm T2WI with DLR (imaging time: 7 minutes) were performed in 42 MS patients. For lesion detection, two neuroradiologists counted the MS lesions in two reading sessions (conventional MRI interpretation with 5 mm T2WI and MRI interpretations with 1 mm T2WI with DLR). The numbers of lesions per region category (cerebral hemisphere, basal ganglia, brain stem, cerebellar hemisphere) were then compared between the two reading sessions.Results: For the detection of MS lesions by 2 neuroradiologists, the total number of detected MS lesions was significantly higher for MRI interpretation with 1 mm T2WI with DLR than for conventional MRI interpretation with 5 mm T2WI (765 lesions vs. 870 lesions at radiologist A, < 0.05). In particular, of the 33 lesions in the brain stem, radiologist A detected 21 (63.6%) additional lesions by 1 mm T2WI with DLR.Conclusion: Using the DLR technique, whole-brain 1 mm T2WI can be performed in about 7 minutes, which is feasible for routine clinical practice. MRI with 1 mm T2WI with DLR enabled increased MS lesion detection, particularly in the brain stem.
著者
Shintaro Ichikawa Utaroh Motosugi Tetsuya Wakayama Hiroyuki Morisaka Satoshi Funayama Daiki Tamada Kang Wang Sagar Mandava Ty A Cashen Hiroshi Onishi
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0143, (Released:2022-03-17)
参考文献数
25
被引用文献数
7

Purpose: To compare the quality of dynamic imaging between stack-of-stars acquisition without breath-holding (DISCO-Star) and the breath-holding method (Cartesian LAVA and DISCO).Methods: This retrospective study was conducted between October 2019 and February 2020. Two radiologists performed visual assessments of respiratory motion or pulsation artifacts, streak artifacts, liver edge sharpness, and overall image quality using a 5-point scale for two datasets: Dataset 1 (n = 107), patients with Cartesian LAVA and DISCO-Star; Dataset 2 (n = 41), patients with DISCO and DISCO-Star at different time points. Diagnosable image quality was defined as ≥ 3 points in overall image quality. Whether the scan timing of the arterial phase (AP) was appropriate was evaluated, and results between the pulse sequences were compared. In cases of inappropriate scan timing in the DISCO-Star group, retrospective reconstruction with a high frame rate (80 phases, 3 s/phase) was added.Results: The overall image quality of Cartesian LAVA was better than that of DISCO-Star in AP. However, noninferiority was shown in the ratio of diagnosable images between Cartesian LAVA and DISCO-Star in AP. There was no significant difference in the ratio of appropriate scan timing between DISCO-Star and Cartesian LAVA; however, the ratio of appropriate scan timing in DISCO-Star with high frame rate reconstruction was significantly higher than that in Cartesian LAVA in both readers. Overall image quality scores between DISCO and DISCO-Star were not significantly different in AP. There was no significant difference in the ratio of appropriate scan timing between DISCO-Star with high frame rate reconstruction and DISCO in both readers.Conclusion: The use of DISCO-Star with high frame rate reconstruction is a good solution to obtain appropriate AP scan timing compared with Cartesian LAVA. DISCO-Star showed equivalent image quality in all phases and in the ratio of appropriate AP scan timing compared with DISCO.
著者
Masaki Terada Yasuo Takehara Haruo Isoda Tetsuya Wakayama Atsushi Nozaki
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2021-0104, (Released:2022-02-11)
参考文献数
52
被引用文献数
9

Recently, the hemodynamic assessments with 3D cine phase-contrast (PC) MRI (4D flow MRI) have attracted considerable attention from clinicians. Unlike 2D cine PC MRI, the technique allows for cardiac phase-resolved data acquisitions of flow velocity vectors within the entire FOV during a clinically viable period. Thus, the method has enabled retrospective flowmetry in the spatial and temporal axes, which are essential to derive hemodynamic parameters related to vascular homeostasis and those to the progression of the pathologies. Accelerations in imaging are critical for this technology to be clinically viable; however, a high SNR or velocity-to-noise ratio (VNR) is also vital for accurate flow measurements. In this chapter, the technologies enabling this difficult balance are discussed.