著者
Vytautas Kulvietis Violeta Zalgeviciene Janina Didziapetriene Ricardas Rotomskis
出版者
Tohoku University Medical Press
雑誌
The Tohoku Journal of Experimental Medicine (ISSN:00408727)
巻号頁・発行日
vol.225, no.4, pp.225-234, 2011 (Released:2011-11-03)
参考文献数
55
被引用文献数
47 55

Nanoparticles (NP) are organic or inorganic substances, the size of which ranges from 1 to 100 nm, and they possess specific properties which are different from those of the bulk materials in the macroscopic scale. In a recent decade, NP were widely applied in biomedicine as potential probes for imaging, drug-delivery systems and regenerative medicine. However, rapid development of nanotechnologies and their applications in clinical research have raised concerns about the adverse effects of NP on human health and environment. In the present review, special attention is paid to the fetal exposure to NP during the period of pregnancy. The ability to control the beneficial effects of NP and to avoid toxicity during treatment requires comprehensive knowledge about the distribution of NP in maternal body and possible penetration through the maternal-fetal barrier that might impair the embryogenesis. The initial in vivo and ex vivo studies imply that NP are able to cross the placental barrier, but the passage to the fetus depends on the size and the surface coating of NP as well as on the experimental model. The toxicity assays indicate that NP might induce adverse physiological effects and impede embryogenesis. The molecular transport mechanisms which are responsible for the transport of nanomaterials across the placental barrier are still poorly understood, and there is a high need for further studies in order to resolve the NP distribution patterns in the organism and to control the beneficial effects of NP applications during pregnancy without impeding the embryogenesis.
著者
Violeta Araminaite Violeta Zalgeviciene Renata Simkunaite-Rizgeliene Rimantas Stukas Arvydas Kaminskas Janina Tutkuviene
出版者
東北ジャーナル刊行会
雑誌
The Tohoku Journal of Experimental Medicine (ISSN:00408727)
巻号頁・発行日
vol.234, no.1, pp.41-50, 2014 (Released:2014-08-30)
参考文献数
61
被引用文献数
8

Maternal undernutrition can affect offspring’s physical status and various health parameters that might be transmittable across several generations. Many studies have focused on undernutrition throughout pregnancy, whereas maternal undernutrition prior to pregnancy is not sufficiently studied. The objective of our study was to explore the effects of food restriction prior to and during pregnancy on body weight and longevity of the second generation offspring. Adult female Wistar rats (“F0” generation) were 50% food restricted for one month prior to pregnancy (pre-pregnancy) or during pre-pregnancy and pregnancy. The third group was fed normally (control). The first generation offspring were normally fed until the 6th month of age to produce the second generation offspring; namely, the first-generation female rats were mated with male breeders from outside the experiment. The second generation offspring thus obtained were observed until natural death (up to 36 months). Compared to the controls, the second-generation male offspring whose “grandmothers (F0 females)” undernourished only during pre-pregnancy were significantly heavier from the 8th month of age, whereas no significant weight difference was found in the male offspring whose “grandmothers” were food-restricted during pre-pregnancy and pregnancy. Shorter lifespan was observed in the second-generation male offspring of “grandmothers” that were food-restricted either during pre-pregnancy or during pre-pregnancy and pregnancy. By contrast, no differences in body weight and lifespan were observed in all second-generation female offspring. In conclusion, maternal caloric restriction prior to pregnancy increases the body weight and shortens the longevity of the second-generation male offspring, indicating the sex-dependent transgenerational effect of maternal caloric restriction.