著者
TOMITA Tomohiko SHIRAI Taiga YAMAURA Tsuyoshi
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-011, (Released:2019-11-30)

In general, La Niña (LN) events are longer than El Niño (EN) events. Using objective analysis data, we herein investigated the effects of the Australian winter monsoon (AWM) on prolonging LN events. Conventionally, EN events are terminated through the eastward shift of the anomalous Walker circulation in the equatorial Pacific during March–August. In contrast, the stronger-than-usual AWM induced by the LN anchors the upflow branch of anomalous Walker circulation in the Indonesian maritime continent (IMC). The strength of the AWM is controlled by the surface temperature difference between the IMC and the northern Australian continent (NAC). The LN has a large impact on the decrease in surface temperature on the NAC through decrease of the downward surface short-wave radiation flux and increase in surface soil moisture on the NAC. In LN events, the strength of the AWM and the anomalous Walker circulation reinforce each other through the common convective ascending in and around the IMC, which may be termed LN–AWM feedback, prolonging the duration of LN events. During EN events, such feedback is weak so that EN events generally end in the period of March–August.
著者
TOMITA Tomohiko YAMAURA Tsuyoshi
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-018, (Released:2020-02-11)

The Baiu front (BF) is generally formed in May in the western North Pacific. Using objective analysis data from 1979 to 2014 (36 years), this study investigated the interannual variability of Baiu frontal activity (BFA) in May (BFA-M). In May, seasonal enhancement of warm and moist southerlies from the tropics climatologically establishes the BF as a large-scale quasi-stationary front. The strength of the southerlies from the tropics also controls the interannual variability of BFA-M. The anomalous large-scale circulation centered around Taiwan, which can be interpreted as a moist Rossby wave from the equatorial Kelvin–Rossby wave packet in the western tropical Pacific, modifies the strength of the southerlies. The equatorial Kelvin–Rossby wave packet, which is identified as the equatorial intraseasonal oscillation (ISO), propagates eastward from the Indian Ocean to the western Pacific. The interannual variability of BFA-M has a biennial tendency, which stands in contrast with the three-year or four-year variation period of the El Niño/Southern Oscillation (ENSO). The biennial tendency is characterized by a zonal tripole distribution of sea surface temperature anomalies in the tropical Pacific, with corresponding anomalous Walker circulations. The induced anomaly fields are suitable for confining the disintegration of the equatorial Kelvin–Rossby wave packet in the western tropical Pacific and guiding the following northwestward propagation of the moist Rossby wave. With the phase reversal of ISO, the biennial tendency remains in the western part of the BF from May to mid-June, although the ENSO controls the BFA in the central part of the BF in June. This study proposes that the equatorial ISO in the Indian Ocean in April can be an indicator of BFA-M strength in the western North Pacific.