著者
YU Tiantian CHANDRASEKAR V. XIAO Hui JOSHIL Shashank S
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2021-004, (Released:2020-10-29)
被引用文献数
5

Accurate estimation of snowfall rate during snowstorms is crucial. This estimate directly impacts the hydrological and atmospheric models. The density of snow plays a very important role in estimating the snowfall rate. In this paper, the density of snow is investigated during a huge snowstorm event during the International Collaborative Experiment held during the PyeongChang 2018 Olympics and Paralympic winter games (ICE-POP 2018). The density is calculated using the terminal velocities and diameters of the snow particles measured by a disdrometer. In this study, we not only use radar reflectivity factor (Z) for snowfall rate (S) estimation, but also use dual-frequency ratio (DFR). We derive S-Z and S-Z-DFR relations for snowfall estimation during this snowstorm event after considering the density of snow. The comparisons are performed between National Aeronautics and Space Administration (NASA) Dual-frequency Dual-polarization Doppler Radar (D3R) and precipitation gauges using these two power-law relations. The results show that the two relations for snowfall rate estimation agree well with gauges, but the S-Z-DFR method performs the best, which has a lower normalized standard error. The error in the snowfall rate estimates decreases as the time scale becomes large. This shows that the S-Z-DFR algorithm is a promising way for snowfall quantitative precipitation estimation (QPE) and can be used as a ground validation tool for Global Precipitation Measurement (GPM) snowfall production evaluations.