- 著者
-
Yasuhiro Tsuji
- 出版者
- The Pharmaceutical Society of Japan
- 雑誌
- Biological and Pharmaceutical Bulletin (ISSN:09186158)
- 巻号頁・発行日
- vol.44, no.9, pp.1174-1183, 2021-09-01 (Released:2021-09-01)
- 参考文献数
- 79
- 被引用文献数
-
1
Therapeutic drug monitoring and target concentration intervention based on population pharmacokinetic and pharmacodynamic models has been strongly recommended for anti-methicillin-resistant Staphylococcus aureus (MRSA) agents in order to provide appropriate antimicrobial chemotherapy to each individual patient, and pharmacokinetic and pharmacodynamic analyses in hospitalized patients have been actively conducted, as evidenced with vancomycin. Teicoplanin, daptomycin, and linezolid have been the most studied antibiotics, using population pharmacokinetics of patients with MRSA. Infections caused by MRSA have higher severity and fatality rates than other antimicrobial-susceptible infections. Therefore, many medical facilities have been implementing infection control programs based on antimicrobial stewardship to prevent nosocomial infections and drug-resistant strains. Studies detailing pharmacometrics for these antibiotics have been reported to elucidate the pharmacokinetic and pharmacodynamic properties, to determine significant factors influencing variabilities between individuals, and to develop target concentration interventions and dosing regimens for adults, the elderly, patients with renal insufficiency including those on continuous renal replacement therapies, patients with low body weight, obese patients, and pediatric patients. This review presents the details of our recent research on the optimal dosing design of antimicrobial agents for the treatment of MRSA infection based on hospital pharmacometrics. In addition, the prospect of using modeling and simulation has shown major advantages in supporting dosing regimen selection.