著者
Nozomi Yamamoto Yuji Tanno Yoichi Tanaka Daiki Hira Tomohiro Terada Yoshiro Saito Yuya Yokozawa
出版者
The Pharmaceutical Society of Japan
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.46, no.3, pp.511-516, 2023-03-01 (Released:2023-03-01)
参考文献数
27

Pharmacogenetics (PGx) enhances personalized care, often reducing medical costs, and improving patients’ QOL. Unlike single variant analysis, multiplex PGx panel tests can result in applying comprehensive PGx-guided medication to maximize drug efficacy and minimize adverse reactions. Among PGx genes, drug-metabolizing enzymes and drug transporters have significant roles in the efficacy and safety of various pharmacotherapies. In this study, a genotyping panel has been developed for the Japanese population called PGx_JPN panel comprising 36 variants in 14 genes for drug-metabolizing enzymes and drug transporters using a mass spectrometry-based genotyping method, in which all the variants could be analyzed in two wells for multiplex analysis. The verification test exhibited good concordance with the results analyzed using the other standard genotyping methods (microarray, TaqMan assay, or another mass spectrometry-based commercial kit). However, copy number variations such as CYP2D6*5 could not apply to this system. In this study, we demonstrated that the mass spectrometry-based multiplex method could be useful for in the simultaneous genotyping of more than 30 variants, which are essential among the Japanese population in two wells, except for copy number variations. Further study is needed to assess our panel to demonstrate the clinical use of pharmacogenomics for precision medicine in the Japanese population.
著者
Kentaro Matsumoto Shenwei Ni Hiroyuki Arai Takashi Toyama Yoshiro Saito Takehiro Suzuki Naoshi Dohmae Kojiro Mukai Tomohiko Taguchi
出版者
Japan Society for Cell Biology
雑誌
Cell Structure and Function (ISSN:03867196)
巻号頁・発行日
vol.48, no.1, pp.59-70, 2023 (Released:2023-02-16)
参考文献数
43

Stimulator of interferon genes (STING) is an ER-localized transmembrane protein and the receptor for 2',3'-cyclic guanosine monophosphate–adenosine monophosphate (cGAMP), which is a second messenger produced by cGAMP synthase (cGAS), a cytosolic double-stranded DNA sensor. The cGAS-STING pathway plays a critical role in the innate immune response to infection of a variety of DNA pathogens through the induction of the type I interferons. Pharmacological activation of STING is a promising therapeutic strategy for cancer, thus the development of potent and selective STING agonists has been pursued. Here we report that mouse STING can be activated by phenylarsine oxide (PAO), a membrane permeable trivalent arsenic compound that preferentially reacts with thiol group of cysteine residue (Cys). The activation of STING with PAO does not require cGAS or cGAMP. Mass spectrometric analysis of the peptides generated by trypsin and chymotrypsin digestion of STING identifies several PAO adducts, suggesting that PAO covalently binds to STING. Screening of STING variants with single Cys to serine residues (Ser) reveals that Cys88 and Cys291 are critical to the response to PAO. STING activation with PAO, as with cGAMP, requires the ER-to-Golgi traffic and palmitoylation of STING. Our results identify a non-nucleotide STING agonist that does not target the cGAMP-binding pocket, and demonstrate that Cys of STING can be a novel target for the development of STING agonist.Key words: STING agonist, cysteine modification, innate immunity, phenylarsine oxide
著者
Hiroko Shibata Kazuko Nishimura Yoshiro Saito Akiko Ishii-Watabe
出版者
The Pharmaceutical Society of Japan
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.46, no.4, pp.621-629, 2023-04-01 (Released:2023-04-01)
参考文献数
13

Monitoring serum infliximab (INF) concentrations is crucial for designing appropriate doses for patients with rheumatoid arthritis. It is recommended to maintain the serum trough INF level at least 1.0 µg/mL. In Japan, an in vitro diagnostic kit using immunochromatography has been approved to determine whether the serum INF concentration is over 1.0 µg/mL or not, and to support the determination of the necessity of increasing the dose or switching to another drug. Biosimilars (BS) of INF may have immunochemical properties different from those of its innovator product, which may show different reactivities on the diagnostic kit. In this study, the responses of the innovator and five BS products on the kit were compared. Based on visually comparing the intensity of color development between the test and control samples, differences were found in the judgment results depending on the analyst. In particular, 1.0 µg/mL was not determined as positive in some cases, whereas 2.0 µg/mL was reliably determined as positive. Overall, no significant difference in reactivity was found between the innovator and five BS products. To further compare the differences in immunochemical properties, the reactivity of these products with three enzyme-linked immunosorbent assay (ELISA) kits was compared. The results confirmed that there were no significant differences among the innovator and BS products in reactivity with the examined kits. When using that diagnostic kit, the users need to be aware that the judgement around 1.0 µg/mL INF may differ depending on the test conditions, including the analyst.
著者
Kentaro Matsumoto Shenwei Ni Hiroyuki Arai Takashi Toyama Yoshiro Saito Takehiro Suzuki Naoshi Dohmae Kojiro Mukai Tomohiko Taguchi
出版者
Japan Society for Cell Biology
雑誌
Cell Structure and Function (ISSN:03867196)
巻号頁・発行日
pp.22085, (Released:2022-12-28)

Stimulator of interferon genes (STING) is an ER-localized transmembrane protein and the receptor for 2’,3’-cyclic guanosine monophosphate&endash;adenosine monophosphate (cGAMP), which is a second messenger produced by cGAMP synthase (cGAS), a cytosolic double-stranded DNA sensor. The cGAS-STING pathway plays a critical role in the innate immune response to infection of a variety of DNA pathogens through the induction of the type I interferons. Pharmacological activation of STING is a promising therapeutic strategy for cancer, thus the development of potent and selective STING agonists has been pursued. Here we report that mouse STING can be activated by phenylarsine oxide (PAO), a membrane permeable trivalent arsenic compound that preferentially reacts with thiol group of cysteine residue (Cys). The activation of STING with PAO does not require cGAS or cGAMP. Mass spectrometric analysis of the peptides generated by trypsin and chymotrypsin digestion of STING identifies several PAO adducts, suggesting that PAO covalently binds to STING. Screening of STING variants with single Cys to serine residues (Ser) reveals that Cys88 and Cys291 are critical to the response to PAO. STING activation with PAO, as with cGAMP, requires the ER-to-Golgi traffic and palmitoylation of STING. Our results identify a non-nucleotide STING agonist that does not target the cGAMP-binding pocket, and demonstrate that Cys of STING can be a novel target for the development of STING agonist.Key words: STING agonist, cysteine modification, innate immunity, phenylarsine oxide
著者
Keiko MAEKAWA Masaya ITODA Kimie SAI Yoshiro SAITO Nahoko KANIWA Kuniaki SHIRAO Tetsuya HAMAGUCHI Hideo KUNITOH Noboru YAMAMOTO Tomohide TAMURA Hironobu MINAMI Kaoru KUBOTA Atsushi OHTSU Teruhiko YOSHIDA Nagahiro SAIJO Naoyuki KAMATANI Shogo OZAWA Jun-ichi SAWADA
出版者
The Japanese Society for the Study of Xenobiotics
雑誌
Drug Metabolism and Pharmacokinetics (ISSN:13474367)
巻号頁・発行日
vol.21, no.2, pp.109-121, 2006 (Released:2006-05-10)
参考文献数
35
被引用文献数
36

The ATP-binding cassette transporter, ABCG2, which is expressed at high levels in the intestine and liver, functions as an efflux transporter for many drugs, including clinically used anticancer agents such as topotecan and the active metabolite of irinotecan (SN-38). In this study, to elucidate the linkage disequilibrium (LD) profiles and haplotype structures of ABCG2, we have comprehensively searched for genetic variations in the putative promoter region, all the exons, and their flanking introns of ABCG2 from 177 Japanese cancer patients treated with irinotecan. Forty-three genetic variations, including 11 novel ones, were found: 5 in the 5′-flanking region, 13 in the coding exons, and 25 in the introns. In addition to 9 previously reported nonsynonymous single nucleotide polymorphisms (SNPs), 2 novel nonsynonymous SNPs, 38C>T (Ser13Leu) and 1060G>A (Gly354Arg), were found with minor allele frequencies of 0.3%. Based on the LD profiles between the SNPs and the estimated past recombination events, the region analyzed was divided into three blocks (Block -1, 1, and 2), each of which spans at least 0.2 kb, 46 kb, and 13 kb and contains 2, 24, and 17 variations, respectively. The two, eight, and five common haplotypes detected in 10 or more patients accounted for most (>90%) of the haplotypes inferred in Block -1, Block 1, and Block 2, respectively. The SNP and haplotype distributions in Japanese were different from those reported previously in Caucasians. This study provides fundamental information for the pharmacogenetic studies investigating the relationship between the genetic variations in ABCG2 and pharmacokinetic/pharmacodynamic parameters.