Podoplanin (PDPN) is a prognostic factor and is involved in several mechanisms of tumor progression in human squamous cell carcinoma (SCC). Canine non-tonsillar SCC (NTSCC) is a common oral tumor in dogs and has a highly invasive characteristic. In this study, we investigated the function of PDPN in canine NTSCC. In canine NTSCC clinical samples, PDPN overexpression was observed in 80% of dogs with NTSCC, and PDPN expression was related to ki67 expression. In PDPN knocked-out canine NTSCC cells, cell proliferation, cancer stemness, and migration were suppressed. As the mechanism of PDPN-mediated cell proliferation, PDPN knocked-out induced apoptosis and G2/M cell cycle arrest in canine NTSCC cells. These findings suggest that PDPN promotes tumor malignancies and may be a novel biomarker and therapeutic target for canine NTSCC.
Podoplanin is expressed in various human tumors where it promotes tumor progression, epithelial-mesenchymal transition, and distant metastasis. Podoplanin is also expressed in cancer-associated fibroblasts and induces tumor malignancy. The objective of this study was to evaluate podoplanin expression in various types of feline tumor tissues. Immunohistochemical analysis revealed that podoplanin was expressed in cells of 13/15 (87%) squamous cell carcinomas and 5/19 (26%) fibrosarcomas. Moreover, cancer-associated fibroblasts expressed podoplanin in most tumor types, including 18/21 (86%) mammary adenocarcinoma tissues. Our findings demonstrate that various types of feline tumor tissues expressed podoplanin, indicating the importance of the comparative aspects of podoplanin expression, which may be used as a novel research model for podoplanin biology.
Podoplanin is expressed in various human tumors where it promotes tumor progression, epithelial-mesenchymal transition, and distant metastasis. Podoplanin is also expressed in cancer-associated fibroblasts and induces tumor malignancy. The objective of this study was to evaluate podoplanin expression in various types of feline tumor tissues. Immunohistochemical analysis revealed that podoplanin was expressed in cells of 13/15 (87%) squamous cell carcinomas and 5/19 (26%) fibrosarcomas. Moreover, cancer-associated fibroblasts expressed podoplanin in most tumor types, including 18/21 (86%) mammary adenocarcinoma tissues. Our findings demonstrate that various types of feline tumor tissues expressed podoplanin, indicating the importance of the comparative aspects of podoplanin expression, which may be used as a novel research model for podoplanin biology.