著者
Tanaka Akira Imai Hideyuki Miyakoshi Masaaki
出版者
IEEE - Institute of Electrical and Electronics Engineers
雑誌
IEEE Transactions on Signal Processing (ISSN:1053587X)
巻号頁・発行日
vol.58, no.7, pp.3569-3577, 2010-07
被引用文献数
10

A perfect reconstruction of functions in a reproducing kernel Hilbert space from a given set of sampling points is discussed. A necessary and sufficient condition for the corresponding reproducing kernel and the given set of sampling points to perfectly recover the functions is obtained in this paper. The key idea of our work is adopting the reproducing kernel Hilbert space corresponding to the Gramian matrix of the kernel and the given set of sampling points as the range space of a sampling operator and considering the orthogonal projector, defined via the range space, onto the closed linear subspace spanned by the kernel functions corresponding to the given sampling points. We also give an error analysis of a reconstructed function by incomplete sampling points.

言及状況

外部データベース (DOI)

CiteULike (1 posts)

[gramian][hilbert][kernel][matrix][orthogonal][projection][reproducing][sampling][space][theorem]

はてなブックマーク (1 users, 1 posts)

Kernelinduced sampling theorem

Twitter (2 users, 2 posts, 8 favorites)

@N_Y_Big_Apple 予習材料です。 https://t.co/hTMmPfDste
もとになった論文は同著者のこれ 『Kernel-Induced Sampling Theorem』https://t.co/HUXHaDJTOs

収集済み URL リスト