著者
Shinichi FUKUHARA Takeshi FUJINAGA Shogo WATANABE Hisao OKA
出版者
一般社団法人日本生体医工学会
雑誌
生体医工学 (ISSN:1347443X)
巻号頁・発行日
vol.54Annual, no.Proc, pp.P2-C04-1-P2-C04-2, 2016 (Released:2016-11-19)
参考文献数
3

Electromyogram (EMG) is recorded electrical muscle contraction, mechanomyogram (MMG) indicates cross-sectional area change of muscle, reflect mechanical muscle contraction. By simultaneously measuring both signals, it is possible to multifaceted evaluation of muscle contraction. However, MMG measurement at voluntary movement was difficult. Therefore, the authors developed MMG / EMG hybrid transducer capable of simultaneous measurement of MMG and EMG. This study evaluated MMG and EMG of rectus femoris (RF) and hamstrings using recumbent bicycle of easy load regulation. As result, dMMGbase (baseline of displacement MMG) indicated cross-sectional area change of muscle at pushing down and pulling up of pedal. In addition, EMG and dMMGbase increased with pushing down of pedal in RF, dMMGacc (acceleration dMMGbase) showing muscle contraction force was output simultaneously. Each signal of hamstrings had output that antagonize RF. By simultaneously measuring MMG and EMG at recumbent bicycle pedaling, it was possible to evaluate muscle contraction of voluntary movement.
著者
Kanchi Ito Yuki Osawa Kenta Kaneko Yutaka Kikuchi Masato Odagaki
出版者
一般社団法人日本生体医工学会
雑誌
Advanced Biomedical Engineering (ISSN:21875219)
巻号頁・発行日
vol.6, pp.42-47, 2017 (Released:2017-04-03)
参考文献数
10

Two different experiments utilizing the motor imagery of finger movement were conducted. We attempted to reveal the difference in corticospinal excitability between tonic contraction (TC) and rhythmic movement (RM) by transcranial magnetic stimulation (TMS). The magnetic coil was placed over the subject’s primary motor cortex to elicit motor-evoked potentials (MEPs) by TMS. We have previously shown that the MEP amplitude is modulated by the frequency of active and passive finger movements. We hypothesized that visual feedback affects the corticospinal excitability. In the present study, the subject observed both TCs and RMs, and the MEP amplitudes elicited by TMS during both tasks were analyzed to assess changes in corticospinal excitability influenced by the motor imagery. A mirror box was used to show the subject the finger movement executed by a third person as if it were his own finger movement. For the TC task, the third person performed a pinching task consisting of TC of the index finger and thumb. The subject received visual feedback of the TC in the mirror. For the RM task, the subject observed the mirror while the third person performed RM of the index finger until TMS was applied. The frequencies of finger movement were 0.5, 1, 2, 3, and 4 Hz. The resulting MEP amplitudes for the RM task at movement frequencies of 2, 3, and 4 Hz were significantly lower than that for the TC task. These results indicate that corticospinal excitability is increased by visual feedback of TC but is modulated by that of RM.
著者
Kenzo Akazawa Tomoko Ichinose Kakuko Matsumoto Masayoshi Ichie Tsutomu Masuko Ryuhei Okuno
出版者
一般社団法人日本生体医工学会
雑誌
Advanced Biomedical Engineering (ISSN:21875219)
巻号頁・発行日
vol.6, pp.1-7, 2017 (Released:2017-01-25)
参考文献数
11
被引用文献数
4

We have developed a novel electronic musical instrument with a pre-programmed score, called “Cymis,” to help the disabled enjoy playing musical pieces. In 2008, field experiments commenced at a nursing home (capacity 52 clients; average age 58.6; cerebral palsy 32 clients). The purpose of the present study was to demonstrate that Cymis is useful and effective for helping the severely disabled maintain or improve their quality of life. First, the accessibility of Cymis was revealed by the fact that 34 clients (63%) played Cymis for an average of 5.6 years. Second, each client’s progress in performance, which possibly reflects improvements of upper-limb motor control function, was examined for the longest duration of over 7 years. Among 31 clients, 13 (42%) showed progress, 17 (55%) showed no change (5 of whom showed progress initially but then regressed to their original status), and 1 (3%) revealed deterioration in condition. Third, psychological effects were measured using an original Face Scale before and after playing Cymis, for a total of 395 performances by 38 clients. Clients became happier in 208 performances (53%), showed no changes in 139 (35%), and became sadder in 48 (12%). Finally, with respect to their care plans, 19 of 52 clients (37%) selected Cymis in 2015, and this number itself implies the importance of Cymis. Basic reasons for selection were investigated by care workers’ assessments from mental and psychological perspectives. In conclusion, Cymis was useful, effective, and attractive to the disabled; it permitted them to enjoy playing music that might not otherwise be possible, and some evidence of therapeutic effect was found.
著者
Mariko Kuwabara Hiroyuki Tashiro Yasuo Terasawa Koji Osawa Takashi Tokuda Jun Ohta Takashi Fujikado
出版者
一般社団法人日本生体医工学会
雑誌
Advanced Biomedical Engineering (ISSN:21875219)
巻号頁・発行日
vol.6, pp.59-67, 2017 (Released:2017-05-31)
参考文献数
25
被引用文献数
3

Development of direct neural interface (DNI) including visual prostheses absolutely requires confirmation of their long-term safety and stability. Functional evaluation by electrically evoked potentials (EEPs) is effective in this regard, although the recording system must be stable for chronic use. In addition, control of anesthetic depth is important for stable recording of the evoked potentials. The purpose of this study was to develop a chronically implanted electrode capable of recording visual evoked responses safely during repeated anesthesia over long periods, which would allow more effective safety evaluations of not only visual prostheses but also DNI. We developed two types of electrodes, and implanted them into rabbits. A general screw electrode was used for comparison with the novel electrodes. Structurally, the newly developed platinum (Pt) ball-tip screw electrode consisted of a plastic screw with smoothly surfaced Pt balls on the tip. The depth of implantation into the brain was adjustable via a threaded insert installed in the skull. The newly developed platinum/iridium (Pt/Ir) ball-tip planar multi-electrode array (MEA) comprised Pt/Ir ball electrodes placed in a two-dimensional lattice pattern, which was implanted just beneath the skull. These electrodes recorded variations in visual evoked potentials (VEPs) in response to 20 J flash stimuli over a period of 48 weeks. After 48 weeks of implantation, the ability of the electrodes to continue recording EEPs was confirmed (500 µA, 500 µs, cathodic first biphasic). During the recording of VEPs and EEPs, stable anesthesia was maintained with isoflurane (end-tidal 2.4%). The depth of anesthesia using isoflurane could be adjusted safely, and allowed stable recording of evoked potentials throughout the long-term study. However, stable recording using the general screw electrode was possible only for a short period. We also obtained stable latency and N1 amplitude readings over the 48 weeks using the newly developed electrodes, and successfully recorded EEPs after the 48-week period. These results suggest that the novel electrodes work well over the entire duration of the study, and may allow assessment of long-term safety and stability of not only visual prostheses, but also other devices utilizing brain machine interfaces or direct neural interfaces.
著者
Kaori Shikano Keisuke Chiba Shogo Miyata
出版者
一般社団法人日本生体医工学会
雑誌
Advanced Biomedical Engineering (ISSN:21875219)
巻号頁・発行日
vol.4, pp.170-178, 2015 (Released:2015-11-25)
参考文献数
19
被引用文献数
5

Hypertrophic scars are frequently observed at wound sites that had been subjected to cyclical stretch stimuli, such as skin of the anterior chest wall and lower abdomen. Previous studies found that cyclic stretch modulated fibroblast infiltration and collagen fiber remodeling compared with static culture conditions. However, these studies used homogeneous cultures that poorly replicated the physiological organization at the wound site. Similar to early studies, we hypothesized that cyclic stretch modulated fibroblast infiltration and collagen fiber remodeling compared with static culture conditions. However, we replaced the homogeneous culture condition used in previous studies with a novel two-gel wound model consisting of an inner decellularized collagen gel mimicking the wound site and an outer fibroblast gel simulating the epidermis. These models were then subjected to either 1-Hz uniaxial cyclical stretch for 3 h each day or were placed under static culture conditions. After day 4 in culture, we found two significant differences between specimens under the cyclic stretch conditions and those under static conditions. First, there were fewer fibroblast infiltrates in the inner wound-mimicking gel in cyclically stretched specimens than in statically stretched specimens. Second, the microstructure and orientation of collagen fibers in cyclically stretched specimens differed histologically from those in static culture. These results add to the growing evidence that cyclical stretch modulates the wound-healing process.