著者
荒井 亮一
出版者
埼玉大学大学院理工学研究科
雑誌
埼玉大学大学院理工学研究科博士学位論文 : 論文内容の要旨及び論文審査の結果の要旨
巻号頁・発行日
vol.38, pp.33-36, 2010

博士の専攻分野の名称 : 博士(理学)学位授与年月日 : 平成22年3月24日
著者
桐生 浩希
出版者
埼玉大学大学院理工学研究科
雑誌
平成19年度環境制御システムコース修士論文発表会要旨集
巻号頁・発行日
vol.12, pp.17-20, 2008

The prevalence of Japanese cedar pollinosis has been increased. Japanese cedar pollen (JCP), which contains two allergens Cry j 1 and Cry j 2, belongs to coarse particles (particle diameter >2 μm). Some researchers showed that respirable-sized particles containing pollen allergen (particle diameter <2 μm) may be resuspended after light rainfall in the atmosphere. These particles may cause pollen asthma, however, release mechanisms of them are still uncertain. Therefore, it is important to examine release behaviour of Cry j 1 and Cry j 2 from JCP. The aim of this study is to found respirable-sized particles containing Cry j 1 and Cry j 2 (Cry j 1, Cry j 2 particles) in the atmosphere, to examine elution phenomenon of Cry j 1 from JCP and JCP burst followed by Cry j 2 release. Cry j 1 and Cry j 2 particles were collected size-selectively and were visualized by immunofluorescence technique. Consequently, Cry j 1 and Cry j 2 particles can be confirmed to resuspend in the atmosphere. The original solutions (OS) and the eluted solutions (ES) were prepared from mixture of JCP and artificial rain solution (ARS). The percentage of Cry j 1 concentration of ES to that of OS has already been exceeded 50 % within 1 hour after mixing. In contrast, pollen exposed to humidified air wasn’t burst. However, it is suggested that pollen burst with rainfall is due to osmotic pressure by rainfall. As a result, it was supposed that Cry j 1 and Cry j 2 particles might be generated from JCP which contacts rainfall. We propose to convert from pollen information to allergen information and to recommend avoidance of pollen asthma.
著者
李 廷廷
出版者
埼玉大学大学院理工学研究科
雑誌
博士論文(埼玉大学大学院理工学研究科(博士後期課程))
巻号頁・発行日
2015

1. 序論 ....................................................................................................................... 12. 原理 ....................................................................................................................... 32-1. 蛍光体の基礎................................................................................................... 32-1-1. ルミネッセンスの基礎.............................................................................. 32-1-2. 不純物原子の光吸収と発光....................................................................... 52-2. バンド間光学遷移率と光学遷移 ...................................................................... 82-2-1. 電磁場と電子の相互作用ハミルトニアン ................................................. 82-2-2. 遷移の行列要素と選択則 .......................................................................... 82-2-3. 遷移確率 ................................................................................................... 92-2-4. 基礎吸収、直接遷移と間接遷移.............................................................. 102-3. 半導体の不純物とルミネッセンス................................................................. 132-3-1. 不純物に束縛された励起子の発光 .......................................................... 132-3-2. 等電子トラップによる発光..................................................................... 142-3-3. ドナー・アクセプタペアの発光 ............................................................... 142-4. 深い準位........................................................................................................ 162-4-1. 格子欠陥 .................................................................................................162-4-2. 深い準位のキャリア統計 ........................................................................ 172-4-3. 深い準位の評価 ...................................................................................... 182-5. 蛍光体の合成法と応用技術 ........................................................................... 202-5-1. 固相反応法(セラミックス法).............................................................. 202-5-2. ゾル‐ゲル法 .......................................................................................... 213. 測定系.................................................................................................................. 233-1. 結晶相 XRD の測定 ....................................................................................... 233-2. 表面均一性 SEM の測定 ................................................................................ 243-3. 発光・励起スペクトルの測定.......................................................................... 263-4. PL 量子効率の測定........................................................................................ 283-5. 熱ルミネッセンス(TL)の測定 ................................................................... 293-6. 二波長励起フォトルミネッセンス(TWEPL)の測定 .................................. 313-7. 時間分解フォトルミネッセンスの測定.......................................................... 334. バナジン酸塩蛍光体 ............................................................................................ 344-1. Zn3V2O8、CsVO3 と Cs3VO4 蛍光体の概要..................................................... 344-2. 実験手法........................................................................................................ 354-3. 結晶相、表面及び発光特性の評価................................................................. 374-3-1. Zn3V2O8、CsVO3、Cs3VO4 蛍光体の比較 ............................................... 374-3-2. CsVO3、Cs3VO4 蛍光体......................................................................... 414-4. Cs-V-O 系の熱ルミネッセンスの評価 ........................................................... 484-4-1. 測定系 .................................................................................................... 484-4-2. 考察 ........................................................................................................ 494-5. Cs-V-O 系の二波長励起フォトルミネッセンスの評価................................... 524-5-1. 測定系 .................................................................................................... 524-5-2. AGE 強度依存性 ..................................................................................... 534-5-3. BGE エネルギー依存性 .......................................................................... 544-5-4. BGE 励起強度依存性 .............................................................................. 574-5-5. 考察 ........................................................................................................ 605. Ba3Si6O12N2:Eu2+(BSON)蛍光体 ......................................................................... 615-1. 実験手法........................................................................................................ 615-1-1. BSON 蛍光体の作製 ............................................................................... 615-2. 結晶相、表面及び発光特性の評価................................................................. 625-2-1. 結晶構造 ................................................................................................. 625-2-2. 結晶相 XRD ............................................................................................ 635-2-3. 表面均一性 SEM..................................................................................... 645-2-4. 発光特性 PL と PLE ............................................................................... 655-2-5. PL 強度の温度依存性 ............................................................................. 675-3. 熱ルミネセンスの評価 .................................................................................. 695-3-1. 測定系 .................................................................................................... 695-3-2. 考察(熱ルミネッセンスの結果) .......................................................... 705-4. 二波長励起フォトルミネッセンスの評価 ...................................................... 825-4-1. 測定系 .................................................................................................... 825-4-2. 考察 ........................................................................................................ 845-4-2-1 AGE 励起光源 5.59eV と 3.31eV を用いて非発光再結合準位の評価 ......... 845-4-2-2 室温でサンプル A と B の TWEPL 結果と比較........................................... 855-4-2-3 10K と室温時のサンプル B の TWEPL 結果と比較 .................................... 995-4-2-4 10K と室温時のサンプル A の AGE 照射時間依存性の検討..................... 1055-4-2-5 時分解 PL 測定 .......................................................................................... 1076. 結論 ................................................................................................................... 1106-1. バナジン酸塩蛍光体 .................................................................................... 1106-2. BSON 蛍光体............................................................................................... 111謝辞 .......................................................................................................................... 112参考文献 ................................................................................................................... 113研究業績 ................................................................................................................... 116付録 .......................................................................................................................... 118補足結果 ................................................................................................................... 120