著者
黒田 満 斉藤 剛 渡辺 由美子 東 正毅
出版者
一般社団法人情報処理学会
雑誌
情報処理学会論文誌 (ISSN:18827764)
巻号頁・発行日
vol.38, no.3, pp.555-562, 1997-03-15
被引用文献数
1

計算機援用の形状設計に有用な,曲率が弧長の区分2次関数となる曲率微分連続な補間曲線の導き方について述べている.弧長によってパラメトリック表現されるこの曲線は,曲率がスパン内に変曲点を持たず比較的変化が少ないという好ましい性質を持っている.汎用の数式処理システムを導入して与点通過と境界条件からなる非線形連立方程式を解いてこの曲線を導いている.記号式も数値と同様に処理できるのでアルゴリズムを簡潔に記述することができるとともに種々の境界条件をデータとして与えることができる.また,導出された曲線の各スパンをG2連続な2クロソイド弧で局所的に近似する方法を示して従来曲線との整合性をとっている.This paper presents a method for obtaining an interpolating G3 curve useful for computer aided design,whose curvature is piecewise quadratic of arclength and so does not have any inflection point in each span.The curve is derived from a system of nonlinear equations based on interpolation conditions and boundary conditions by general purpose computer algebra system.The method describes an algorithm concisely and tries various boundary conditions because it can manipulate symbolic expressions as well as numerical data.A method is also presented for approximating each span of the derived curve as a G2 bi-clothoid for consistency with the conventional curve.

言及状況

Wikipedia (1 pages, 2 posts, 2 contributors)

収集済み URL リスト