著者
森 信介 土屋 雅稔 山地 治 長尾 真
出版者
一般社団法人情報処理学会
雑誌
情報処理学会研究報告自然言語処理(NL)
巻号頁・発行日
vol.1998, no.48, pp.93-99, 1998-05-28

本論文では、確率的モデルによる仮名漢字変換を提案する。これは、従来の規則とその重みに基づく仮名漢字変換と異なり、入力に対応する最も確率の高い仮名漢字混じり文を出力とする。この方法の有効性を確かめるため、片仮名列と仮名漢字混じり文を有するコーバスを用いた変換実験を行ない、変換精度を測定した。変換精度は、第一変換候補と正解の最長共通部分列の文字数に基づく再現率と適合率である。この結果、我々の提案する手法による再現率は95.07%であり、適合率は93.94%であった。これは、市販の仮名漢字変換器の一つであるWnn6の同じテストコーパスに対する再現率(91.12%)と適合率(91.17%)を有意に上回っており、確率的モデルによる仮名漢字変換の有効性を示す結果となった。In this paper, we present a kanji-kanji converter by a stochastic model. Given an input this method returns the most probable kana-kanji character sequence. For its evaluation, we converted kana sequences of a corpus containing kana-kanji sequences. The criterion we used is the ratio of the length of longest common subsequece. The recall and precision of our method are 95.07% and 93.94% respectively. This result is much better than that of Wnn6 (recall: 91.12%; precision: 91.17%).

言及状況

はてなブックマーク (1 users, 1 posts)

Twitter (3 users, 3 posts, 1 favorites)

@ey272 動作原理は、NoisyChannelモデルで、言語モデルにクラス言語モデルを用いている教科書に載っているようなオーソドックスな方法です。「言語と計算 (4) 確率的言語モデル」とか http://ci.nii.ac.jp/naid/110002934730/

収集済み URL リスト