- 著者
-
立石 健二
福島 俊一
小林 のぞみ
高橋 哲朗
藤田 篤
乾 健太郎
松本 裕治
- 出版者
- 一般社団法人情報処理学会
- 雑誌
- 情報処理学会研究報告自然言語処理(NL)
- 巻号頁・発行日
- vol.2004, no.93, pp.1-8, 2004-09-16
- 被引用文献数
-
14
本稿では、Web文書から意見を抽出し、それらをレーダーチャートの形式で要約/視覚化する意見抽出分類システムを提案する。Webの意見は、商品購入の際の情報収集、市場調査等のマーケティング、企業のリスク管理等、さまざまな目的での利用が考えられる。Webの意見の収集/分析に関する研究には2つの課題がある、対象とするWeb文書から意見に該当する箇所を抽出すること、抽出した意見を要約/視覚化することである。本システムは、この2つの課題を3つ組{対象物 属性 評価}のモデルと情報抽出の手法を用いて解決する。本システムを車に関するレビューサイトの100記事を対象として評価したところ抽出精度が適合率82% 再現率52%であり、システムが出力したレーダーチャートと人手で作成したレーダーチャートが類似することを確認した。This paper proposes an opinion extraction and classification system, which extracts people's opinions from Web documents and summarize/visualizes them in the form of "radar charts". People's opinions on the Internet are available for many purposes such as surveys before purchasing products, market research and risk management for enterprises. There are two issues on this area. One is to locate opinion sentences from Web documents, and the other is to summarize/visualize the extracted opinions. The proposed system solves them by employing an opinion model {object name, attribute expression, evaluative expression} and information extraction techniques. The experimental result conducted with 100 articles on the car domain showed that the system performed 82% on precision and 52% on recall, and that both radar charts created by the system and by the hand are similar to each other.