著者
野口 和人 氏原 慎弥 黄瀬 浩一 岩村 雅一
出版者
一般社団法人電子情報通信学会
雑誌
電子情報通信学会技術研究報告. PRMU, パターン認識・メディア理解 (ISSN:09135685)
巻号頁・発行日
vol.108, no.484, pp.205-210, 2009-03-06
被引用文献数
1

カメラ付き携帯電話を入力デバイスとした画像認識では,撮影した画像のぶれやぼけが認識精度低下の原因となる.そのため,ぶれやぼけに対処する手法が重要となる.本稿では,局所特徴量の近似最近傍探索による認識手法に対して,原画像に様々がぶれやぼけを与えた画像を生成し学習する生成型学習を導入することによって対処する.生成型学習を導入するにあたって問題となるのは,学習データの増加にともなって最近傍探索に必要なメモリ量と処理時間が増大することである.これは,特に大規模なデータベースを用いた場合に問題となる.提案手法では,多段階化とスカラー量子化によってこれを解決する.1万枚の画像データベースを用いた実験の結果,生成型学習を用いない手法と比べて認識率が12.3%向上することがわかった.

言及状況

はてなブックマーク (2 users, 3 posts)

Twitter (1 users, 1 posts, 1 favorites)

RT @twitt_bot : CiNii -  カメラ付き携帯電話を入力デバイスとした大規模画像認識(一般セッション5,コンピュータビジョンとパターン認識のための学習理論) http://ci.nii.ac.jp/naid/110007327140

収集済み URL リスト