Ceek.jp Altmetrics (α ver.)
文献ランキング
合計
1ヶ月間
1週間
1日間
文献カレンダー
新着文献
すべて
2 Users
5 Users
10 Users
新着投稿
Yahoo!知恵袋
レファレンス協同データベース
教えて!goo
はてなブックマーク
OKWave
Twitter
Wikipedia
検索
ウェブ検索
ニュース検索
ホーム
文献詳細
1
0
0
0
学習オートマトンを伴う競合学習・強化学習オンラインクラスタリングによる収束性能の向上および避難誘導システムへの応用
著者
新井 康平
ト 憲強
出版者
The Institute of Image Electronics Engineers of Japan
雑誌
画像電子学会誌
(
ISSN:02859831
)
巻号頁・発行日
vol.40, no.2, pp.361-368, 2011
短時間に安定したクラスタ解に収束する強化学習・競合学習に学習オートマトンを考慮した新たなオンラインクラスタリング(Pursuit Reinforcement Competitive Learning: PRCL)を提案する.クラスタリング手法の性能比較用に多用されているカリフォルニア大学のUCIリポジトリを用いて既存の手法,Reinforcement Guided Competitive Learning: RGCL,Sustained RGCL: SRGCL,Vector Quantization: VQとクラスタリング性能を比較し,PRCLがほかに比べて収束性能などにおいて優れていることを示す.また,PRCLを限定領域にランダムに散在する避難民を二つの避難口に誘導する状況を設定した避難誘導シミュレーションに適用し,避難民の衝突確率,避難に要する時間,二つの避難口の避難民数のバランスなどを評価した結果,既存手法の中で最も高性能なVQよりも高性能であることを確認した.
言及状況
変動(ピーク前後)
変動(月別)
分布
外部データベース (DOI)
1
Mendeley
Google Scholar
はてなブックマーク
(1 users, 2 posts)
[online][clustering][paper]
[online][clustering][paper]
収集済み URL リスト
https://ci.nii.ac.jp/naid/130004437960
(1)