著者
長山 格 宮原 彬 島袋 航一
出版者
一般社団法人 電気学会
雑誌
電気学会論文誌. D, 産業応用部門誌 (ISSN:09136339)
巻号頁・発行日
vol.139, no.2, pp.158-165, 2019
被引用文献数
2

<p>This paper proposes a new lazy learning algorithm, named balanced-kNN, for high performance robust classification of noisy patterns. K-nearest neighbor (k-NN) is a simple and powerful method with a high accuracy for various real world applications using unbiased datasets. However, noisy datasets are often gathered in real world applications. This paper presents a new robust algorithm, balanced-kNN, and compares the prediction accuracy with some conventional methods by using UCI datasets. The experimental results show that the balanced-kNN algorithm can perform more efficient classification of noisy data than the normal-kNN and weighted-kNN algorithms.</p>

言及状況

外部データベース (DOI)

Twitter (1 users, 1 posts, 0 favorites)

雑音にロバストなLazy LearningアルゴリズムBalanced-kNNの提案とその評価 : https://t.co/pkZ00CpoPx

収集済み URL リスト