- 著者
-
長山 格
宮原 彬
島袋 航一
- 出版者
- 一般社団法人 電気学会
- 雑誌
- 電気学会論文誌. D, 産業応用部門誌 (ISSN:09136339)
- 巻号頁・発行日
- vol.139, no.2, pp.158-165, 2019
- 被引用文献数
-
2
<p>This paper proposes a new lazy learning algorithm, named balanced-kNN, for high performance robust classification of noisy patterns. K-nearest neighbor (k-NN) is a simple and powerful method with a high accuracy for various real world applications using unbiased datasets. However, noisy datasets are often gathered in real world applications. This paper presents a new robust algorithm, balanced-kNN, and compares the prediction accuracy with some conventional methods by using UCI datasets. The experimental results show that the balanced-kNN algorithm can perform more efficient classification of noisy data than the normal-kNN and weighted-kNN algorithms.</p>