- 著者
-
上原 賢祐
森 浩二
齊藤 俊
- 出版者
- 一般社団法人 日本機械学会
- 雑誌
- 日本機械学会論文集 (ISSN:21879761)
- 巻号頁・発行日
- vol.83, no.849, pp.16-00473-16-00473, 2017 (Released:2017-05-25)
- 参考文献数
- 19
A Peltier element is considered as a way to enable local temperature control and also has several advantages including rapid thermal response, no vibration and compactness. Therefore, a focal cooling device using a Peltier element for treatment is expected to apply to various parts of a living body. In the design of the device ensuring both the energy efficiency and therapeutic effect, it is necessary to understand the thermoelectric conversion characteristics of the Peltier element and the thermal conductivity of the attachment in the device, which should be designed in accordance with the cooling performance and size. Therefore, the investigation using a mathematical model is believed to play an important role in such case. The purposes of this study are to clarify the characteristics of the model parameters and to investigate whether performance evaluation of the device from its characteristics is possible. Model parameters were identified experimentally using three prototypes of different sizes and cooling abilities. From the result of the parameter identification, internal resistance and thermal conductance of the Peltier device are dependent on the cooling performance. The parameters representing the thermal conductance between each attachment in the device are strongly depend on the size. However, changes of these parameters were smaller than the size ratio of the device. Our results suggest that it can provide useful information to the designer.