著者
大塚 秀幸 V.A. Dinh 大野 隆央 津﨑 兼彰 土谷 浩一 佐原 亮二 北澤 英明 中村 照美
出版者
一般社団法人 日本鉄鋼協会
雑誌
鉄と鋼 (ISSN:00211575)
巻号頁・発行日
vol.100, no.10, pp.1329-1338, 2014 (Released:2014-09-30)
参考文献数
22
被引用文献数
10

The effects of carbon content on tetragonality and magnetic moment of bcc iron have been evaluated by first-principles calculation. Three kinds of supercells, Fe54C1, Fe54C2 and Fe128C1 (which correspond to Fe-0.40C, Fe-0.79 and Fe-0.17C mass%, respectively) are used for the calculation of tetragonality and magnetic moment of Fe-C system. Main results obtained are as follows. (1) The total energy and mechanical energy of the Fe-C system with carbon atom at the octahedral sites are smaller than those with carbon atom at the tetragonal sites. The carbon atom at octahedral site produces fairly large expansion in one direction. (2) Tetragonality of Fe-C system obtained by first-principles calculation increases linearly with increasing carbon content and agrees well with experimental results. The average magnetic moment of an Fe atom increases with increasing carbon content. (3) The magnetic moment of an Fe atom at the nearest neighbor of carbon atom is lower than that of pure iron and increases with increasing distance between the iron and carbon atoms. The projected density of states shows a hybridization with main contributions from Fe d and C p states which leads to the above mentioned decrease of the magnetic moment of an Fe atom. (4) In Fe54C2, tetragonality and magnetic moment of iron atom change with the distance between two carbon atoms. The value of tetragonality is either 0.981, 1.036 or 1.090. When the dumbbell structure which consists of the first carbon atom and its two nearest neighbor iron atoms is perpendicular to the second dumbbell structure which consists of the second carbon atom and its two nearest neighbor iron atoms, the tetragonality is 0.981 and does not agree with experimental value. The mechanical energy is relatively large. On the other hand, when the first dumbbell structure is parallel to the second dumbbell structure, the tetragonality is 1.036 which agrees well with experimental data. The mechanical energy is relatively small. When straight C-Fe-C pair is formed, tetragonality is 1.090. (5) In Fe54C2, formation enthalpy is relatively low when the calculated tetragonality is 1.036, and the existence probability under the assumption of Boltzmann distribution is high. In other cases, the existence probability is nearly zero. (6) The average magnetic moment of an Fe atom is proportional to volume, but not in a clear relation with tetragonality. It is considered that the increase of magnetic moment of an Fe atom by the addition of carbon atom is mainly due to the magneto-volume effect but not due to the tetragonality effect.
著者
中村 照美 平岡 和雄
出版者
社団法人溶接学会
雑誌
溶接学会論文集 : quarterly journal of the Japan Welding Society (ISSN:02884771)
巻号頁・発行日
vol.19, no.1, pp.44-53, 2001-02-05
被引用文献数
19

Narrow gap welding (NGW) joints offers many advantages over conventional welding methods, such as good mechanical properties of joints, high welding efficiency and low residual stress. As the groove gap width becomes narrower, the arc heat input can be reduced and the merits in narrow gap welding increases more. Generally, GMA welding method has been never applied to less than 5 mm groove gap, because it is guessed that it is arc instability and lack of fusion at the groove bottom area occur. In this paper, first of all, arc behavior under narrower gap joints is discussed, and it was concluded that the arc in MIG arc welding irregularly perturbates up-to-downwards along the groove wall under less than 5 mm gap, but CO_2 arc was stable under narrower gap. Next, penetrations at the groove bottom area in CO_2 arc welding were discussed. Characteristics of bead formation phenomena in CO_2 buried arc welding of bead-on-plate were analyzed. From the results, the relationship between hydrostatic potential of molten metal and arc force corresponding with welding current was estimated. Furthermore, the width of gauging region of penetration by arc force was measured and the relationship between the melting width at groove bottom and welding conditions (welding current and welding speed) can be suggested. With these results, numerical simulation model was proposed and the optimum welding conditions to melt the groove bottom area sufficiently and to minimize heat input were searched by numerical simulation. And then narrow gap welding with 5 mm groove gap was carried out using these simulated welding conditions. In the experimental results, the weld bead was obtained without lack of fusion at groove bottom, but the convex surface bead was formed which is disagreeable in multi-pass welding. The new welding process was proposed from numerical simulations in order to prevent this convex bead and to obtain sufficient melting at bottom area. In the new process, the wire extension can be controlled by welding current waveform and then arc regularly oscillated up-to-downwards along the groove wall. In this arc oscillation, arc heating distribution along groove wall 1ed to both sufficient penetration at groove bottom and concave surface bead shape.