- 著者
-
本多 克宏
大森 正博
生方 誠希
野津 亮
- 出版者
- 一般社団法人 システム制御情報学会
- 雑誌
- システム制御情報学会論文誌 (ISSN:13425668)
- 巻号頁・発行日
- vol.29, no.3, pp.130-135, 2016-03-15 (Released:2016-06-15)
- 参考文献数
- 14
Privacy preservation is an important issue in such personal information analysis as crowd movement analysis with face image recognition. This paper proposes a novel framework for estimating crowd movement characteristics without exactly distinguishing each person, in which personal authentication is performed in eigen-face spaces after fuzzy k-member clustering-based k-anonymization of feature vectors. An experimental result demonstrates that, supported by fuzzy partitioning, the novel framework can improve not only the noise sensitivity and anonymization quality of the conventional k-member clustering but also the reproducibility of crowd movement.