- 著者
-
丸山 茂徳
寺林 優
藤岡 換太郎
- 出版者
- 公益社団法人 東京地学協会
- 雑誌
- 地学雑誌 (ISSN:0022135X)
- 巻号頁・発行日
- vol.98, no.3, pp.319-349, 1989-06-25 (Released:2011-02-17)
- 参考文献数
- 143
- 被引用文献数
-
2
4
A brief review of the study on ophiolite is given. 165 years have passed already since a first use of the term “ophiolite” by BRONGNIART (1813), but still have not yet obtained a broadly satisfying solution on its origin and emplacement. However, the rapidly increased data set during the last 15 years on both on-land ophiolite and oceanfloors clearly indicate the strong constraints on its origin and emplacement.The period during 1813-1927 was a time of description of ophiolite. BRONGNIART (1827) classified ophiolite into a group of igneous rocks, since then began a debate whether ophiolitic peridotite is igneous or the other in origin. SUESS (1909) had noticed that ophiolites appear characteristically in orogenic belts. It was STEINMANN (1927) who had first recognized a close association of peridotite, gabbro, diabase-spilite, and radiolarian chert suggesting a deep sea origin of ophiolite. The significance of his finding has never been looked back until the revolutional period of plate tectonics in the late' 60s.The second period of 1927-1949 was the time of debate on igeneous origin. BOWEN and his coworkers insisted igneous origin based on experimental petrology for the ultramafic rocks in general. But if so, an abnormally high temperature ca. 1, 900°C was necessary to explain the occurrence of dunite. BENSON (1926) pointed out that if BOWEN'S idea is true, the country rocks of ophiolite must be subjected a high-temperature contact metamorphism, but not in the field. HESS (1939) has given a new idea of serpentinite magma to solve the problem, but its possibility had completely been disproved by the experiment of MgO-SiO2-H2O by BOWEN and TUTTLE (1949).The third period (1949-1959) began by a break-through idea of DE ROEVER (1957), who speculated that ophiolitic peridotite is a piece of mantle material, which was brought into an orogen by a tectonic process.The fourth period (1959-1973) started by BRUNN (1959) who compared ophiolite with the rocks in the Mid-Atlantic Ridge. This period (1959-1973) was the time of plate tectonics. During the early' 60s the ocean-floor spreading theory was proposed by HESS and DIETZ, and both thought that the layer 3 is composed of serpentinite oreclogite. The year 1969 was a memorial year, when both MOORES and DAVIES distinguished cumulate peridotite from the underlying residue tectonite, the latter of which is a refractory mantle after the formation of oceanic crust by partial fusion of mantle peridotite. The best example of ophiolite was the Troodos massif in Cyprus, where the extensive-scale of parallel dike swarm develops indicating ocean-floor spreading. Thereafter an ophiolite boom has come out, and flood of papers appeared to regard ophiolite to be of mid-oceanic ridge in origin. However, several geologists have doubted mid-oceanic ridge origin by the facts of much thinner crust, more silicic volcanic composition, and frequent occurrence of phenocrystic augite in ophiolites. MIYASHIRO (1973) solved such problems, and concluded that Troodos was formed in an island-arc setting. This paper was very shocking for geologists who wanted to establish the basic framework of orogeny by plate tectonics in those days, but epoch-making on the study of ophiolite, and corresponding to the time, when the method of study has changed to be modernized and more interdisciplinary.