著者
柳井 修一 青木 一勝 赤堀 良光
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.119, no.6, pp.1079-1124, 2010-12-25 (Released:2011-03-17)
参考文献数
121
被引用文献数
25 64

Median Tectonic Line (MTL) and Fossa Magna (Itoigawa-Shizuoka Tectonic Line) had long been considered to be the most critical fault boundaries controlling development of the Japanese Islands since Naumann (1885) and Kobayashi (1941). After the appearance of plate tectonics, several new interpretations emerged, e.g., sub-surface Benioff plane for the MTL. In this paper, we propose that those tectonic lines, major faults, and Tanakura Tectonic Line (TTL) were formed through a process at micro-plate boundaries during the opening of the Japan Sea in the Miocene. MTL could have been formed along the consuming boundary between the PHS plate and Japan Sea microplate, which has shifted southward to the Nankai trough, accompanying large-scale tectonic erosion. Fossa Magna was formed as a gigantic transform fault with a transtension component in the Medial-Japan Sea when opening was initiated. The eastern and western boundaries of the Japan Sea must be a strike-slip fault, corresponding to TTL to the east, and a newly proposed strike-slip fault called the West Kyushu Tectonic Line, respectively. Fossa Magna, a medial region defined by two NS-trending Miocene parallel faults in central Honshu, defined by Nauman (1885) could be interpreted to be the largest transform fault in the Medial-Japan Sea to offset the spreading axis when the Japan Sea opened. It should be emphasized that large-scale tectonic erosion occurred in front of consuming plate boundaries facing the PHS and PAC plates oceanward during the opening of the Japan Sea. The volume of tectonic erosion is calculated to be 17,581,500 km3, which is equivalent to 2/3 of the present-day Japan arc crust, which is sufficient to reach the depth of the megalith between the upper and lower mantle boundary, even with 10 km thickness of materials eroded and transported along the Benioff zone. Although MTL, Fossa Magna, and TTL are remarkable in the geology of Japan, these young faults never affected the orogeneses of Japan back to 520 Ma, which grew the continental crust of Japan. We propose that microplate boundary processes decreased the volume of the Japan crust.
著者
磯崎 行雄 丸山 茂徳 青木 一勝 中間 隆晃 宮下 敦 大藤 茂
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.119, no.6, pp.999-1053, 2010-12-25 (Released:2011-03-17)
参考文献数
145
被引用文献数
26 74

The geotectonic subdivision and relevant definitions of geotectonic units in the Japanese Islands are revised on the basis of new data, particularly with detrital zircon dating of U-Pb ages and seismic profiling of the deep arc crust across the islands. In addition to the final confirmation of the subhorizontal structures of the Paleozoic to Cenozoic accretionary complexes and their high-P/T metamorphosed equivalents, several new aspects were recognized; i.e., detection of the eastern extension of the collisional suture between the Sino-Korean and Yangtze cratons in the Higo belt with medium-pressure-type metamorphism in SW Japan, and separation of the traditional Sanbagawa belt into two distinct metamorphic belts characterized by mutually different ages of protolith AC-formation and peak metamorphism. The occurrence and consumption of 4 Paleozoic to Mesozoic granite batholiths, as major provenances for the ancient Japanese Islands, are documented by detrital zircon dating of Paleozoic–Mesozoic sandstones. With respect to these new findings, the definitions of unit boundaries were thoroughly revised in terms of chronological spectrum in “ocean plate stratigraphy–metamorphism”. The geological significance of 5 major tectonic lines (faults) of the Pacific-type (or Miyashiro-type) orogen in Japan, i.e., the Nagato–Hida marginal TL, Osayama–Omi TL, Ishigaki–Kuga TL, Paleo–Median TL, and Butsuzo TL, is discussed. The current revision of the geotectonic subdivision and definitions of component units and their mutual boundaries leads to the following conclusions, which challenge the conventional understanding of the orogenic history of the Japanese Islands. (1) Proto-Japan in the Early Paleozoic was located closer to the South China (Yangtze) craton rather than the North China (Sino–Korean) craton. (2) Ever since 520 Ma, subduction of past Pacific ocean floors formed mature arc-trench systems with a full set of granite batholith, fore-arc basin, accretionary complex, and high-P/T metamorphosed equivalents at least 5 times; however, the former 4 sets were almost completely destroyed, with the exception of smaller tectonic blocks that currently occur within serpentinite mélange. (3) Tectonic erosion played a significant role in consuming ancient fore-arc crusts including 4 granite batholiths of the Paleozoic to mid-Mesozoic. (4) Serpentine mélange represents the former Wadati–Benioff plane along which tectonic erosion took place. (5) The Japanese Islands, which basically developed along the Yangtze continental margin, have experienced multiple episodes of oceanward growth and continentward retreat due to alternating subduction-accretion and tectonic erosion. (6) Net production of juvenile crust occurred on a large scale along the Japan margin during the 500 million year-long oceanic subduction regime since the Cambrian; however, intensive tectonic erosion effectively erased the older crusts from the surface and enriched the underlying sub-arc mantle with heat-generating continental material.
著者
柳井 修一 青木 一勝 赤堀 良光
出版者
Tokyo Geographical Society
雑誌
地學雜誌 (ISSN:0022135X)
巻号頁・発行日
vol.119, no.6, pp.1079-1124, 2010-12-25
被引用文献数
8 64

Median Tectonic Line (MTL) and Fossa Magna (Itoigawa-Shizuoka Tectonic Line) had long been considered to be the most critical fault boundaries controlling development of the Japanese Islands since Naumann (1885) and Kobayashi (1941). After the appearance of plate tectonics, several new interpretations emerged, <i>e.g.</i>, sub-surface Benioff plane for the MTL. In this paper, we propose that those tectonic lines, major faults, and Tanakura Tectonic Line (TTL) were formed through a process at micro-plate boundaries during the opening of the Japan Sea in the Miocene.<br> MTL could have been formed along the consuming boundary between the PHS plate and Japan Sea microplate, which has shifted southward to the Nankai trough, accompanying large-scale tectonic erosion. Fossa Magna was formed as a gigantic transform fault with a transtension component in the Medial-Japan Sea when opening was initiated. The eastern and western boundaries of the Japan Sea must be a strike-slip fault, corresponding to TTL to the east, and a newly proposed strike-slip fault called the West Kyushu Tectonic Line, respectively. Fossa Magna, a medial region defined by two NS-trending Miocene parallel faults in central Honshu, defined by Nauman (1885) could be interpreted to be the largest transform fault in the Medial-Japan Sea to offset the spreading axis when the Japan Sea opened.<br> It should be emphasized that large-scale tectonic erosion occurred in front of consuming plate boundaries facing the PHS and PAC plates oceanward during the opening of the Japan Sea. The volume of tectonic erosion is calculated to be 17,581,500 km<sup>3</sup>, which is equivalent to 2/3 of the present-day Japan arc crust, which is sufficient to reach the depth of the megalith between the upper and lower mantle boundary, even with 10 km thickness of materials eroded and transported along the Benioff zone.<br> Although MTL, Fossa Magna, and TTL are remarkable in the geology of Japan, these young faults never affected the orogeneses of Japan back to 520 Ma, which grew the continental crust of Japan. We propose that microplate boundary processes decreased the volume of the Japan crust.
著者
辻森 樹 原 智美 進士 優朱輝 石坂 知裕 宮島 宏 木村 純一 青木 翔吾 青木 一勝
雑誌
日本地球惑星科学連合2019年大会
巻号頁・発行日
2019-03-14

Nunakawaite' (strontiojoaquinite) is an orthorhombic variety of strontiojoaquinite [Sr2Ba2(Na,Fe)2Ti2[Si4O12]2O2(O,OH)2·H2O]; it is a rare joaquinite group mineral that is only found in a riebeckite-bearing albitite in the serpentinite-matrix mélange of the Itoigawa–Omi area. The mineral was originally named after 'Princess Nunakawa' (nunakawa hime) in the Japanese Shinto mythology 'Kojiki'.'Nunakawaite' is characterized by remarkably high Ba, Zr, Nb, Zn, LREEs, MREEs, and enriched in U (35.8–721 µg·g-1), Pb (2.2–31 µg·g-1), and Th (7.42–2365 µg·g-1). LA-ICPMS analyses show highly variable U/Pb (238U/206Pb = 9.245–68.98) and Pb (207Pb/206Pb = 0.0758–0.756) isotope ratios, and the scattered trend define an isochron line with a lower intercept at 89.19 ± 1.07 Ma. The 'nunakawaite' U–Pb age confirms that the 'nunakawaite'-hosted riebeckite-bearing albitite formed at late Cretaceous. This implies that the serpentinite-matrix mélange unit with early Paleozoic jadeitites and late Paleozoic blueschist, eclogite and amphibolite was reactivated by a significantly younger tectonic event.In-situ Sr-Pb isotope analyses show two different isotope trends between Sr-rich accessory minerals in riebeckite-bearing albitite ('nunakawaite' and ohmilite) and those in jadeitite (itoigawaite, stronalsite, vesvianite, Sr-rich epidote). The Sr-Pb isotopes also support the idea that the riebeckite-bearing albitite formed by a fluid-induced metasomatic event different from the jadeitite-forming metasomatism at early Paleozoic. The formation of riebeckite-bearing albitite at ~90 Ma is coeval with late Cretaceous granitic intrusion of the Omi area (youngest zircon U–Pb: 90.8 ± 1.1 Ma: Nagamori et al. 2018). The granitic intrusion might have acted an important role in the formation of 'nunakawaite'. In other words, reactivation of metasomatic mineralization in the Paleozoic serpentinite mélange is recorded in the Cretaceous riebeckite-bearing albitite.
著者
青木 一勝 大藤 茂 柳井 修一 丸山 茂徳
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.119, no.2, pp.313-332, 2010-04-25 (Released:2010-07-06)
参考文献数
88
被引用文献数
15 24

The Sanbagawa metamorphic belt in SW Japan was previously considered to extend in the E-W direction from the Kanto Mountains to Kyushu Island, a distance > 800 km. However, Aoki et al. (2007) recently demonstrated that protoliths of metamorphic rocks in the Oboke area of the belt in central Shikoku accumulated at the trench after ca. 90-80 Ma. Furthermore, Aoki et al. (2008) showed that these rocks suffered blueschist metamorphism at 66-61 Ma, which differs from the timing of the Sanbagawa metamorphism. Thus, these results show that the Sanbagawa belt in Shikoku is a composite metamorphic belt. We, therefore, redefine the traditional Sanbagawa belt; the structurally upper part is the Sanbagawa metamorphic belt (sensu stricto). It formed as an accretionary complex at ca. 140-130 Ma and subsequently experienced BS-EC facies metamorphism at ca. 120-110 Ma (Okamoto et al., 2004). By contrast, the structurally lower segment termed the Shimanto BS facies metamorphic belt, formed as an accretionary complex after ca. 90-80 Ma and experienced peak metamorphism at ca. 60 Ma. Our observations have important implications for the lateral extension of these two metamorphic belts in SW Japan. The accretionary ages of the traditional Sanbagawa belt in the Kanto Mountains are younger than the Sanbagawa peak metamorphic age (Tsutsumi et al., 2009), clearly indicating that the entire region of Kanto Mountains Sanbagawa must belong to the Shimanto metamorphic belt. The same timing relationships were also found for the Sanbagawa belt on Kii Peninsula (Otoh et al., 2010). These results, therefore, indicate that the Shimanto metamorphic belt is exposed in Shikoku, Kii, and Kanto, thus the spatial distribution of Sanbagawa belt (ss) is less than half of its previous extent. The metamorphic grade of the Kanto Mountains in the Shimanto metamorphic belt ranges from pumpellyite-actinolite facies to epidote-amphibolite facies. Therefore, the higher-grade rocks of the Shimanto metamorphic rocks are exposed in the Kanto Mountains in comparison with Shikoku and Kii Peninsula. Hence, these two distinct BS-EA-EC (?) metamorphic belts are virtually equivalent in terms of spatial distribution, metamorphic range of grade, and facies series. Pacific-type orogenic belts typically comprise accretionary complex, high-P/T metamorphic belt, fore-arc sediments, and batholith belt landward from the trench (Maruyama et al., 1996). In SW Japan, the Sanbagawa belt (ss) is paired with the Ryoke low-P/T metamorphic belt and with the ca. 120-70 Ma Sanyo TTG batholith belt. Furthermore the related fore-arc basin may have developed penecontemporaneously with the Shimanto BS-EA orogeny, which is paired with the late Cretaceous to early Tertiary San-in TTG belt, which extending along the Japan Sea coast. In-between the intervening Izumi Group, a fore-arc basin deposit formed during the Campanian to Maastrichtian. Thus, these two groups of orogenic units, which formed during independent orogenies were both extensively modified during the opening of the Japan Sea ca. 20 Ma. The southward thrusting of the Ryoke and Cretaceous TTG belts over the Sanbagawa extended beyond the southern limit of the Sanbagawa, leading the up-down relationship of the Sanbagawa (ss) and the Ryoke belts.
著者
大藤 茂 下條 将徳 青木 一勝 中間 隆晃 丸山 茂徳 柳井 修一
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.119, no.2, pp.333-346, 2010-04-25 (Released:2010-07-06)
参考文献数
41
被引用文献数
33 44

We measured the 206Pb/238U age distribution of detrital zircons in five psammitic schist samples from the Sanbagawa Belt in east-central Shikoku and the western Kii Peninsula to constrain their depositional age. The age-distribution diagrams for the five psammitic schist samples all show that detrital zircons of 100 to 90 Ma are most abundant and the age of the youngest zircon in each sample is less than 80 Ma. Considering the age of the retrogressive metamorphism of these psammitic schists, ca. 80-60 Ma, the protoliths age of the psammitic schists is constrained to 75-70 Ma, correlative to the age of the sandstone of the Middle Shimanto Belt (Yanai, 1984). A similar age-distribution has already been reported for two psammitic schist samples from the Central Unit of the Sanbagawa Belt in the Kanto Mountains (Tsutsumi et al., 2009). Thus the Sanbagawa Belt is most widely occupied by metamorphic rocks originating from rocks of the Middle Shimanto Belt. We also measured the 206Pb/238U age distribution of detrital zircons in Turonian sandstone from the Northern Shimanto Belt in the central Kii Peninsula. The age-distribution diagram shows that detrital zircons of around 128 Ma are most abundant and the age of the youngest zircon in the sample is about 100 Ma. A similar age-distribution has already been reported from a psammitic schist sample from the Southern Unit of the Sanbagawa Belt in the Kanto Mountains, overlying the Central Unit (Tsutsumi et al., 2009). The protolith age is still younger than the metamorphic age of the eclogites in central Shikoku, ca. 120-110 Ma (Okamoto et al., 2004), which occupy the uppermost portion of the Sanbagawa Belt. Although some previous studies suggested that the Sanbagawa Belt consists of metamorphosed Late Jurassic to Early Cretaceous accretionary complex, the present study shows that the belt is largely occupied by metamorphosed Late Cretaceous rocks: the Shimanto Metamorphic Rocks of Aoki et al. (2007). As a result, the Sanbagawa Belt consists of the following three units with different protolith ages: (1) Lower Unit of Shimanto Metamorphic Rocks with protoliths ages of 75-70 Ma and metamorphic ages of 70-60 Ma, (2) Upper Unit of Shimanto Metamorphic Rocks with protoliths ages of 95-85 Ma and metamorphic ages of 85-75 Ma, and (3) Sanbagawa Metamorphic Rocks (s.s.) with protoliths ages of Late Jurassic to Early Cretaceous and metamorphic ages of 120-110 Ma. The protoliths of the Upper and Lower units of the Shimanto Metamorphic Rocks are most likely rocks of the Northern Shimanto and Middle Shimanto belts, respectively.
著者
豊田 新 高原 周一 宮川 和也 守田 益宗 青木 一勝 佐藤 幸子 坂根 弦太 青木 宏之 蜂谷 和明 矢城 陽一朗 重松 利信 那須 浩郎 篠原 隆 宮宅 康郎 渡邉 誠 今井 剛樹 今山 武志 兵藤 博信 片山 敏和 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構理科教育センター 岡山理科大学教育支援機構学習支援センター 岡山理科大学教育支援機構学習支援センター 岡山理科大学理学部応用物理学科 岡山理科大学理学部応用物理学科 岡山理科大学自然科学研究所 岡山理科大学自然科学研究所 岡山理科大学非常勤講師
雑誌
岡山理科大学教育実践研究 = Okayama University of Science Educational Practice Research (ISSN:24339946)
巻号頁・発行日
no.1, 2017
著者
青木 一勝
出版者
東京工業大学
雑誌
特別研究員奨励費
巻号頁・発行日
2008

三波川変成帯最高変成度岩石の昇温および後退変成作用の温度-圧力-時間(P-T-time)条件を明らかにするため、三波川変成帯の模式地である四国中央部汗見川地域の最高変成度地域に産するザクロ石と石英が主要構成鉱物であるガーネタイトの岩石学的および熱力学的研究を行った。その結果、この岩石の最高変成P-T条件は、P=15-19kb,T=500-520℃であり、エクロジャイト相変成作用を被ったことを明らかにした。さらに、この地域に産する変成岩中に現在観察される鉱物組み合わせは、変成帯上昇時においてP=7-11kb,T=460-510℃(緑簾石角閃岩相)の条件で加水後退再結晶作用を被ったことにより生成したことも明らかにした。更に、Nano-SIMS(東大、佐野研設置)を用いてジルコンU-Pb年代分析を行った結果、その加水後退再結晶作用が85.6±3.0Maに起きたことが分かった。以上のことから、汗見川地域に産する最高変成度岩石は、エクロジャイト相の変成作用を被った後、上昇過程で85.6±3.0Maに緑簾石角閃岩相の条件で加水後退再結晶作用を被ったことが示された。以上の結果とこれまでに明らかにしてきた結果を組み合わせ,三波川変成帯の変成・形成プロセスを考えると、三波川変成岩の原岩は、沈み込み後、累進変成作用が進み、120-110Maに変成ピークを向え、最高変成度部では、エクロジャイト相に達した。その後、造山帯の走向と直交した南方向に、薄いスラブ状に上昇を開始し、66-61Ma頃に地殻中部(15-17km深度)で下位の四万十変成岩の上位に定置し、貫入を停止した。上昇中に昇温変成作用が進行している四万十変成岩から大量の流体が三波川変成岩を通過することにより、加水後退再結晶が進行し、三波川変成岩の多くは再結晶化して、累進的な構造、鉱物、年代の記録を失った。その後、地殻の隆起が起こり、50Ma頃に表層に露出し、現在に至ったと考えられる。
著者
青木 一勝
出版者
東京大学
雑誌
特別研究員奨励費
巻号頁・発行日
2011

古生代日本の形成・発達プロセスを明らかにするため、西南日本外帯に分布する黒瀬川帯中にレンズ状に産するシルル紀花崗岩類(三滝花崗岩類)からジルコンを分離し、LA-ICPMSを用いてU-Pb年代測定を行った。研究試料には、愛媛県西部の三滝花崗岩類模式地の三滝山地域の花崗閃緑岩、九州中央部祇園山地域の花崗閃緑岩、および紀伊半島西部名南風鼻地域の石英閃緑岩とトーナル岩を用いた。1. 三滝花崗岩類は成因の異なる少なくとも2種類の花崗岩類から成る。2. 三滝花崗岩類のうち、閃緑岩類はどの地域においても約445-435Maの明瞭なピークを持ち、古い粒子は含まないことから、オルドビス紀最末期-シルル紀に形成した新規弧地殻であったと考えられる。本研究で得られた結果とこれまで報告されている研究結果を踏まえると以下のことが考察される。3. トーナル岩に含まれる500Ma以前のジルコンは、約445-435Ma花崗閃緑岩類の元となった弧マグマが貫入・定置することにより融解した既存の大陸/弧地殻岩もしくはその砕屑物に由来すると考えられる。4. トーナル岩中に含まれる900-700Maを示すジルコンは、東アジアで唯一同時期の基盤を持つ南中国地塊の基盤岩から由来したと判断されるので、古生代日本は南中国地塊東縁の弧-海溝系であったと考えられる。5. 本研究により、オルドビス紀-シルル紀の南中国地塊東縁の弧-海溝系では当時の弧地殻や堆積体が広く分布していたことが示された。現在の日本列島においてそれら地質体の分布は非常に限られている。恐らくそれらの大部分はシルル紀後の構造浸食によって日本列島の基盤から消滅したと考えられる。
著者
青木 一勝 大藤 茂 柳井 修一 丸山 茂徳
出版者
Tokyo Geographical Society
雑誌
地學雜誌 (ISSN:0022135X)
巻号頁・発行日
vol.119, no.2, pp.313-332, 2010-04-25
被引用文献数
10 24

The Sanbagawa metamorphic belt in SW Japan was previously considered to extend in the E-W direction from the Kanto Mountains to Kyushu Island, a distance > 800 km. However, Aoki <i>et al.</i> (2007) recently demonstrated that protoliths of metamorphic rocks in the Oboke area of the belt in central Shikoku accumulated at the trench after <i>ca.</i> 90-80 Ma. Furthermore, Aoki <i>et al.</i> (2008) showed that these rocks suffered blueschist metamorphism at 66-61 Ma, which differs from the timing of the Sanbagawa metamorphism. Thus, these results show that the Sanbagawa belt in Shikoku is a composite metamorphic belt. We, therefore, redefine the traditional Sanbagawa belt; the structurally upper part is the Sanbagawa metamorphic belt (<i>sensu stricto</i>). It formed as an accretionary complex at <i>ca.</i> 140-130 Ma and subsequently experienced BS-EC facies metamorphism at <i>ca.</i> 120-110 Ma (Okamoto <i>et al.</i>, 2004). By contrast, the structurally lower segment termed the Shimanto BS facies metamorphic belt, formed as an accretionary complex after <i>ca.</i> 90-80 Ma and experienced peak metamorphism at <i>ca.</i> 60 Ma. Our observations have important implications for the lateral extension of these two metamorphic belts in SW Japan. The accretionary ages of the traditional Sanbagawa belt in the Kanto Mountains are younger than the Sanbagawa peak metamorphic age (Tsutsumi <i>et al.</i>, 2009), clearly indicating that the entire region of Kanto Mountains Sanbagawa must belong to the Shimanto metamorphic belt. The same timing relationships were also found for the Sanbagawa belt on Kii Peninsula (Otoh <i>et al.</i>, 2010). These results, therefore, indicate that the Shimanto metamorphic belt is exposed in Shikoku, Kii, and Kanto, thus the spatial distribution of Sanbagawa belt (<i>ss</i>) is less than half of its previous extent. The metamorphic grade of the Kanto Mountains in the Shimanto metamorphic belt ranges from pumpellyite-actinolite facies to epidote-amphibolite facies. Therefore, the higher-grade rocks of the Shimanto metamorphic rocks are exposed in the Kanto Mountains in comparison with Shikoku and Kii Peninsula. Hence, these two distinct BS-EA-EC (?) metamorphic belts are virtually equivalent in terms of spatial distribution, metamorphic range of grade, and facies series. Pacific-type orogenic belts typically comprise accretionary complex, high-P/T metamorphic belt, fore-arc sediments, and batholith belt landward from the trench (Maruyama <i>et al.</i>, 1996). In SW Japan, the Sanbagawa belt (<i>ss</i>) is paired with the Ryoke low-P/T metamorphic belt and with the <i>ca.</i> 120-70 Ma Sanyo TTG batholith belt. Furthermore the related fore-arc basin may have developed penecontemporaneously with the Shimanto BS-EA orogeny, which is paired with the late Cretaceous to early Tertiary San-in TTG belt, which extending along the Japan Sea coast. In-between the intervening Izumi Group, a fore-arc basin deposit formed during the Campanian to Maastrichtian. Thus, these two groups of orogenic units, which formed during independent orogenies were both extensively modified during the opening of the Japan Sea <i>ca.</i> 20 Ma. The southward thrusting of the Ryoke and Cretaceous TTG belts over the Sanbagawa extended beyond the southern limit of the Sanbagawa, leading the up-down relationship of the Sanbagawa (<i>ss</i>) and the Ryoke belts.
著者
青木 一勝 飯塚 毅 平田 岳史 丸山 茂徳 寺林 優
出版者
日本地質学会
雑誌
地質學雜誌 (ISSN:00167630)
巻号頁・発行日
vol.113, no.5, pp.171-183, 2007-05-15
被引用文献数
10 65

四国中央部大歩危地域に分布する三波川結晶片岩類は,原岩層序に基づき構造的上位から下位に向かい三縄層,小歩危層,川口層に分類されてきた.今回,それぞれの層から火成ジルコンを分離し,LA-ICP-MSを用いてU-Pb年代測定を行った結果,三縄層中のジルコンの多くが1900-1800Maの火成年代を示した.一方,小歩危層・川口層中のジルコンから得られた火成年代は三縄層よりも若く,その中で最も若い年代は,それぞれ92±4Ma,82±11Maであった.両層の堆積年代は更に若く,その年代は,四万十帯北帯の付加年代と一致する.このことから,従来,三波川帯と見なされてきた小歩危層,川口層は,四万十帯北帯であることが明らかになった.したがって,三縄層と小歩危層の層境界は,三波川帯/四万十帯境界にあたる.また,大歩危地域における構造的累重関係は,三波川変成帯が四万十帯の構造的上位に位置することを示している.