著者
小池 惇平
出版者
日本宇宙生物科学会
雑誌
Biological Sciences in Space (ISSN:09149201)
巻号頁・発行日
vol.10, no.4, pp.283-288, 1996 (Released:2006-02-01)
参考文献数
11

In connection with quarantine for interplanetary mission, we have examined the survivalities of terrestrial microorganisms under simulated Mars condition [I-91. In this study, the Mars conditions were simulated by ultraviolet and proton irradiation under similar low temperature, high vacuum and gaseous conditions by using cryostat vehicle. After exposure to the simulated Mars conditions, the survivabilities of the organisms were examined. From the results,the spores of Bacillus subtilis, the spores of Aspergillus niger, some anaerobic bacteria and algae showed considerable high survivalities even after UV and proton irradiations corresponding to 200 years on Mars. This subject is not restricted to academic curiosity but concerns problems involving the contamination of Mars with terrestrial organisms carried by space-probes. If there is a possibility that the terrestrial organisms carried from Earth to Mars can live for a significant period on Mars, a contamination of the Mars should be prevented for the purpose of life-detection-experiments in future.
著者
小池 惇平
出版者
生態工学会
雑誌
CELSS JOURNAL (ISSN:09154353)
巻号頁・発行日
vol.8, no.1, pp.27-32, 1995-09-30 (Released:2010-12-16)
参考文献数
11

We have studied on the ability of living organisms to survive under simulated extraterrestrial condition. The subject is not restricted to an academic curiosity, but concerns problems to prevent the contamination of extraterrestrial circumstance with terrestrial microorganisms carried by spaceprobes. Some species of terrestrial microorganisms can survive even after the exposure under a simulated space conditions.Samples of microb were harvested from air and wall surface in Mir station by Progress M-26 on Feb. 15, 1995. The population of microorganisms and resistace to proton radiation by accelerator and ultra violet were examined.
著者
小池 惇平 大島 泰郎
出版者
日本宇宙生物科学会
雑誌
Biological Sciences in Space (ISSN:09149201)
巻号頁・発行日
vol.4, no.1, pp.3-8, 1990 (Released:2006-02-01)
被引用文献数
5 4

In connection with planetary quarantine, we are studying how terrestrial microorganisms can survive in the cosmic environments. If comon terrestrial microorganisms can not survive in the space even for a short period, we can reduce the cost for sterilizing space probes. The interstellar environments has been simulated by using ultra low temperature high vacuum ( 77 K, 10-6 torr ) improved crynostat and ptoton irradiation from Van de Graaff genarator in the Tokyo Institute of Technology. Various species of terrestrial microorganisms, virus, bacteria, actinomycetes, yeast and fungi were tested quantitatively inactivity under simulated space conditions. After exposing a barrage of the protons corresponding to 250 years irradiation in Space, it was shown that spores of Bacillus subtilis and Aspergillus niger and tabaco mosaic virus can survive about 45%. 25% and 82%, respectively. The results are consistent to report by Weber and Greenberg that spore of B. subtiIis survived 10% under simulated conditions after UV irradiation corresponding to 500 years exposure in space. It might be presumed that the survived terrestrial microorganisms come back to mother earth in future as pathogenic mutants by irradiation of cosmic rays.