著者
永瀬 茂 小林 郁 工藤 貴子
出版者
公益社団法人 日本化学会
雑誌
日本化学会誌 : 化学と工業化学 = Journal of the Chemical Society of Japan : chemistry and industrial chemistry (ISSN:03694577)
巻号頁・発行日
vol.1994, no.3, pp.177-184, 1994-03-10
参考文献数
40

ゲルマニウムを骨格にもつ芳香族化合物,多面体化合物,ラジカルカチオンの特性をab initio分子軌道計算を用いて理論的に研究した.具体的には,(1)ベンゼンと多環式芳香族化合物のナフタレン,アントラセン,ナフタセンおよびペンタセンの骨格炭素をすべてゲルマニウムで置換したときの構造と電子的特性,(2)ゲルマニウムを骨格にもつテトラヘドラン,[n]プリズマン(n=3-10),ドデカヘドランなどの多面体化合物の歪みエネルギー(3)シクロトリゲルマン,ビシクロ[1.1.0]テトラゲルマン,ペンタゲルマ[1.1.1]プロペランおよびヘテロ原子置換体のイオン化による興味深い構造変化を明らかにした.ゲルマニウム骨格の特性を系統的に明らかにするために,対応する炭素,ケイ素,スズおよび鉛化合物とそのラジカルカチオンの同様な計算結果とも比較した.これらより,ゲルマニウムに特有な興味深い物性と新規な構造をいくつか予測した.
著者
梅山 秀明 工藤 貴子
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.29, no.2, pp.554-558, 1981-02-25 (Released:2008-03-31)
参考文献数
26

Diborane as a molecular complex was studied by using a double zeta ab initio MO method and energy decomposition analyses. For diborane, a qualitatively major contribution of HOMO-LUMO transfers was reported by Yamabe et al. on the basis of configuration analyses by using a single zeta basis set. However, no quantitative work on the origin on the complex formation has been reported. In this note, we show that the charge transfer energy is the dominant contributor to the complex formation (2BH3→B2H6). The charge transfer energy and the exchange repulsion are analyzed at the molecular orbital (MO) levels.
著者
梅山 秀明 工藤 貴子 中川 節子
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.29, no.2, pp.287-292, 1981-02-25 (Released:2008-03-31)
参考文献数
32
被引用文献数
7 10

The heat of complex formation of H3PBH3 was calculated to be -15.3 kcal/mol by double zeta ab initio LCAO MO SCF calculations ; this is very similar to the experimental values for (CH3)3PB(CH3)3 and (CH3)3PBF3. The origin of complex formation of H3PBH3 was elucidated by energy decomposition methods. The order of contributions is ES-(41%)>CT (37%)> PL (22%). The d atomic orbitals on phosphorus play a role in increasing the polarization energy upon complex formation. The barrier to internal rotation of H3PBH3 was calculated to be 2.4 kcal/mol, which is in very good agreement with the experimental value of 2.47kcal/mol. The exchange repulsion and the charge transfer energy related to the staggered form contribute to the barrier to internal rotation. The change of the charge transfer energy corresponds to the difference of the barrier heights between H3PBH3 and H3SiCH3. The energies of complex formation of F3PBH3 and (CH3)3PBH3 were calculated, to investigate the origin of the barrier to internal rotation.