著者
奥村 晃史 井村 隆介 今泉 俊文 東郷 正美 澤 祥 水野 清秀 苅谷 愛彦 斉藤 英二
出版者
公益社団法人 日本地震学会
雑誌
地震 第2輯 (ISSN:00371114)
巻号頁・発行日
vol.50, no.appendix, pp.35-51, 1998-03-31 (Released:2010-11-17)
参考文献数
25
被引用文献数
15

The Itoigawa?Shizuoka tectonic line active fault system (ISTL) is one of the longest and the most complex active fault systems on land in Japan with very high activity. The system comprises the northern (55 km long east dipping reverse faults), the middle (60 km long left-lateral strike-slip faults), and the southern (35 km long west-dipping reverse faults) sections. The estimates of the average slip rate range 2 to over 10 m/103 yr in the system. This high slip rate and probable quiescense of the system exceeding 1150 years indicate the possibility of a surface faulting event in the near future. Since historic and instrumental records of seismicity along the ISTL is very poor, geological study on the paleoseismology of the ISTL has an important clue to evaluate the long-term seismic risks of the fault zone. In 1995 and 1996 the Geological Survey of Japan opened six exploratory trenches in the fault system and the results from the three in the northern section are reported in this paper. The Hakuba trench on the Kamishiro fault brought four earthquake events since 6738 BP (dendrocorrected radiocarbon age in calendar year) with the average recurrence interval to be between 1108 and 2430 years. The last event here postdates 1538 BP. The Omachi trench exposed the last event after 6th to 7th century AD and before 12th century at the latest, Only one event after 3rd to 4th century AD was identified in the Ikeda trench. The timing of the last event from each trench is between 500 and 1500 BP, which interval coincides with the timing of the last event in the middle section as well as the 841 AD or 762 AD earthquake reported in historical documents. The dating of the upper age limit of the last event is not precise enough to correlate the event with any of known earthquake. The recurrence interval of the northern section, however, is significantly longer than that of the Gofukuji fault. The difference in the recurrence time from one section to another is concordant with the difference in the apparent slip rate.