著者
荒木 透 柴田 浩司
出版者
The Iron and Steel Institute of Japan
雑誌
鉄と鋼 (ISSN:00211575)
巻号頁・発行日
vol.61, no.9, pp.2226-2237, 1975-07-01 (Released:2010-10-12)
参考文献数
39

Grain refimng and plasticity induced by martensitic transformation are thought to be important for developing high strength steels with ductility. The phenomena are connected with the nucleation process of martensite, although the nucleation mechanism of martensite has been still obscure.In order to get some infbrmations of the nucleation effects of small pre-strain and austenitizing conditions on γ→α martensitic transformation of iron alloys have been investigated by measuring electric resistivity and hardness, and by optical-and electron-microscopy. A part of experimental results have been analyzed numerically by reaction rate equation. Merits and demerits of hitherto suggested models of martensitic nucleation are discussed comparing with the results of thiswork and adirection of future investigation is proposed.
著者
朝倉 健太郎 柴田 浩司 原澤 進 澤幡 浩之 川手 稔
出版者
一般社団法人 日本鉄鋼協会
雑誌
鉄と鋼 (ISSN:00211575)
巻号頁・発行日
vol.89, no.3, pp.375-380, 2003-03-01 (Released:2010-01-15)
参考文献数
3
被引用文献数
2

Alpha-particle track etching (ATE) method is widely used for the observation of boron distribution in steels. In this method, cellulose films are essential. The cellulose film named CN85 has been used in almost all boron observations by ATE method as a standard film. Recently, however, the production of this film was stopped and the stock seems to be almost exhausted. Therefore, finding the alternative films is urgently required. For this reason, in the present research, the quality of the ATE image, the activation by neutron irradiation and other properties of various kinds of films were examined and the following results were obtained. Industrial nitrocellulose (INC-2 and INC-3) films preprocessed in a lithium nitric acid showed suitable ATE images and can be recommended as the first candidate for the alternative film. Another industrial nitrocellulose (INC-4) film shows acceptable ATE images without any pre-process or pre-heat treatment for surface modification. But after the irradiation of neutron this film becomes radioactive through the generation of 60Co. Therefore, it is necessary to handle this film in a hot laboratory as an activation material. Acetyl cellulose and cellulose triacetate films are the third candidate of the new recommendable film and the ATE images are inferior compared with the nitrocellulose films above mentioned.