著者
椿 真史 新保 仁 松本 裕治
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会論文誌 (ISSN:13460714)
巻号頁・発行日
vol.31, no.2, pp.O-FA2_1-10, 2016-03-01 (Released:2016-06-09)
参考文献数
40

The notion of semantic similarity between text data (e.g., words, phrases, sentences, and documents) plays an important role in natural language processing (NLP) applications such as information retrieval, classification, and extraction. Recently, word vector spaces using distributional and distributed models have become popular. Although word vectors provide good similarity measures between words, phrasal and sentential similarities derived from composition of individual words remain as a difficult problem. To solve the problem, we focus on representing and learning the semantic similarity of sentences in a space that has a higher representational power than the underlying word vector space. In this paper, we propose a new method of non-linear similarity learning for compositionality. With this method, word representations are learnedthrough the similarity learning of sentences in a high-dimensional space with implicit kernel functions, and we can obtain new word epresentations inexpensively without explicit computation of sentence vectors in the high-dimensional space. In addition, note that our approach differs from that of deep learning such as recursive neural networks (RNNs) and long short-term memory (LSTM). Our aim is to design a word representation learning which combines the embedding sentence structures in a low-dimensional space (i.e., neural networks) with non-linear similarity learning for the sentence semantics in a high-dimensional space (i.e., kernel methods). On the task of predicting the semantic similarity of two sentences (SemEval 2014, task 1), our method outperforms linear baselines, feature engineering approaches, RNNs, and achieve competitive results with various LSTM models.
著者
椿 真史
出版者
日本神経回路学会
雑誌
日本神経回路学会誌 (ISSN:1340766X)
巻号頁・発行日
vol.28, no.1, pp.28-55, 2021-03-05 (Released:2021-04-05)
参考文献数
30

本稿では,マテリアルズ・インフォマティクスにおけるデータ駆動型機械学習の研究動向について解説する.特に,分子や結晶における物性と機能の問題,量子化学計算による物性データベース,分子や結晶の記述子,そして深層学習アプローチによる物性予測などについて解説する.そして筆者自身の研究も紹介しながら,今後より重要となる機能予測のため,物理化学と融合した転移学習について展望を述べたい.