著者
横井 創磨 佐藤 一誠 中川 裕志
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会論文誌 (ISSN:13460714)
巻号頁・発行日
vol.31, no.6, pp.AI30-C_1-9, 2016-11-01 (Released:2016-11-02)
参考文献数
16

Topic models are generative models of documents, automatically clustering frequently co-occurring words (topics) from corpora. Topics can be used as stable features that represent the substances of documents, so that topic models have been extensively studied as technology for extracting latent information behind large data. Unfortunately, the typical time complexity of topic model computation is the product of the data size and the number of topics, therefore the traditional Markov chain Monte Carlo (MCMC) method cannot estimate many topics on large corpora within a realistic time. The data size is a common concern in Bayesian learning and there are general approaches to avoid it, such as variational Bayes and stochastic gradient MCMC. On the other hand, the number of topics is a specific problem to topic models and most solutions are proposed to the traditional Gibbs sampler. However, it is natural to solve these problems at once, because as the data size grows, so does the number of topics in corpora. Accordingly, we propose new methods coping with both data and topic scalability, by using fast computing techniques of the Gibbs sampler on stochastic gradient MCMC. Our experiments demonstrate that the proposed method outperforms the state-of-the-art of traditional MCMC in mini-batch setting, showing a better mixing rate and faster updating.
著者
横井 創磨 佐藤 一誠 中川 裕志
雑誌
研究報告数理モデル化と問題解決(MPS) (ISSN:21888833)
巻号頁・発行日
vol.2015-MPS-103, no.5, pp.1-5, 2015-06-16

大規模な文書データに対して頻度分布のロングテールに位置する単語は情報量が少ないため,トピックモデルと呼ばれる単語の統計モデルを分布の背後に仮定することで,検索エンジンやオンライン広告などの性能が向上することが知られている.しかし,このような場面において用いられるトピックモデルは,予め仮定する潜在トピック数を高次元に設定する必要があり,計算速度や必要メモリ量が問題になる.トピックモデルの最も基本的なモデルである LDA に対して,大量の文書を扱える SGRLD LDA や高次元のトピックを扱える AliasLDA などの手法が存在するが,大量の文書・高次元のトピックを同時に達成するためには非効率的なアルゴリズムを巨大な計算機リソースを用いて実行しなくてはならない.そこで本研究では,これらの手法をうまく組み合わせることで効率的な計算を可能にする.また,勾配計算において更新の方法を工夫することにより,余分な空間を使わずに期待値計算を行うことができる.実験により,提案手法は大規模データかつ高次元トピックでも実行可能であり,さらに既存手法と比較して速く,特に高次元トピックでは 10 倍以上高速であることを示す.