著者
田中 理恵 河村 麻衣子 水谷 佐久美 袴塚 高志 花尻(木倉) 瑠理
出版者
公益社団法人 日本薬学会
雑誌
YAKUGAKU ZASSHI (ISSN:00316903)
巻号頁・発行日
vol.142, no.6, pp.675-681, 2022-06-01 (Released:2022-06-01)
参考文献数
9
被引用文献数
2

Arylcyclohexylamines are a category of substances to which the anesthetic ketamine belongs. The arylcyclohexylamines have been reported to act as antagonists of the N-methyl-d-aspartate (NMDA) receptor. An analog of ketamine, 2-(ethylamino)-2-(3-methoxyphenyl)-cyclohexanone (methoxetamine; MXE), has been controlled as a narcotic in Japan and overdoses of MXE have been reported to cause health problems. In recent years, MXE derivatives have beendetected in illegal products in Japan. In this study, we describe the identification of three MXE derivatives, 2-(3-methoxyphenyl)-2-(propylamino)cyclohexan-1-one (methoxpropamine; MXPr), 2-(isopropylamino)-2-(3-methoxyphenyl)cyclohexan-1-one (methoxisopropamine; MXiPr) and 2-(3-methoxyphenyl)-2-(propylamino)cyclohexan-1-one (deoxymethoxetamine; DMXE), from illegal products.
著者
田中 理恵 河村 麻衣子 袴塚 高志 花尻(木倉) 瑠理
出版者
公益社団法人 日本薬学会
雑誌
YAKUGAKU ZASSHI (ISSN:00316903)
巻号頁・発行日
vol.140, no.11, pp.1405-1413, 2020-11-01 (Released:2020-11-01)
参考文献数
15
被引用文献数
8

Lysergic acid diethylamide (LSD) is a hallucinogen, synthesized from ergot alkaloid, and controlled as a narcotic in Japan. Recently, LSD derivatives have appeared as designer drugs, all over the world. In previous study, we reported identification and analysis of four LSD derivatives in four paper sheet products. In this study, we detected three additional LSD derivatives from three paper sheet products, which were obtained from September 2019 to March 2020 in Japan. We extracted the compounds from paper sheet products with methanol for LC-MS, high-resolution MS and GC-MS analyses. The compounds were identified as 4-cyclopropionyl-N,N-diethyl-7-methyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxamide (1cP-LSD), N-methyl-N-isopropyl-7-methyl-4,6,6a,7,8,9-hexahydroindolo-[4,3-fg]quinoline-9-carboxamide (MIPLA), 4-butyryl-N,N-diethyl-7-methyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxamide (1B-LSD), by GC-MS, LC-MS, LC-Q-TOF-MS and NMR analyses. As well as other N1-acylated LSD derivatives, 1cP-LSD and 1B-LSD were easily deacylated to LSD during GC-MS analysis, we have to be careful to analyze these compounds.
著者
田中 理恵 河村 麻衣子 袴塚 高志 花尻(木倉) 瑠理
出版者
公益社団法人 日本薬学会
雑誌
YAKUGAKU ZASSHI (ISSN:00316903)
巻号頁・発行日
vol.140, no.5, pp.739-750, 2020-05-01 (Released:2020-05-01)
参考文献数
21
被引用文献数
8

To prevent the abuse of new psychoactive substances (NPS), a total of 2372 substances and two plants are controlled as “Designated Substances” in Japan as of September 2019. Although the distribution of these substances has decreased for the past three years, newly-emerged NPS are still being found. In this study, we detected four lysergic acid diethylamide (LSD) derivatives as designer drugs from four paper sheet products, which were obtained from 2014 to 2017 in Japan. The compounds were identified as 4-Acetyl-N,N-diethyl-7-methyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxamide (ALD-52), N,N,7-triethyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxamide (ETH-LAD), 7-Allyl-N,N-diethyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxamide (AL-LAD), N,N-diethyl-7-methyl-4-propionyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxamide (1P-LSD), by GC-MS, LC-MS, LC-Q-TOF-MS and NMR analyses. Further, we studied the extraction methods of LSD derivatives from paper sheet, and the analytical conditions of GC-MS, LC-MS and LC-FL(fluorescence). Among LSD derivatives, 1P-LSD have been controlled as designated substances (Shitei Yakubutsu) under the Pharmaceutical and Medical Device Act in Japan since April 2016. For the legislation of the other derivatives identified in this study, the evaluation of their pharmacological properties are now in progress.
著者
花尻(木倉) 瑠理 内山 奈穂子 河村 麻衣子 緒方 潤 合田 幸広
出版者
公益社団法人 日本薬学会
雑誌
YAKUGAKU ZASSHI (ISSN:00316903)
巻号頁・発行日
vol.133, no.1, pp.31-40, 2013 (Released:2013-01-01)
参考文献数
30
被引用文献数
14 26

In recent years, many analogs of narcotics have been widely distributed as easily available psychotropic substances and have become a serious problem in Japan. To counter the spread of these non-controlled substances, the Pharmaceutical Affairs Law in Japan was amended in 2006 to establish a new category; Designated Substances in order to more strictly control these substances. In April 2007, 31 compounds and 1 plant were first controlled as Designated Substances. Before 2007, the major compounds distributed in the Japanese illegal drug market were tryptamines, phenethylamines and piperazines. Alkyl nitrites, such as isobutyl nitrite and isopentyl nitrite, were also widely distributed. After they were listed as Narcotics or Designated Substances in 2007, these compounds, especially the tryptamines, quickly disappeared from the market. In their place, cathinone derivatives have been widely distributed, as well as different phenethylamines and piperazines. Additionally, in recent years, new herbal products containing synthetic cannabinoids have appeared globally. As at July 2012, 78 substances (including 1 plant; Salvia divinorum) were listed in the category of Designated Substances. They were 13 tryptamines, 17 phenethylamines, 11 cathinones, 4 piperazines, 23 synthetic cannabinoids, 6 alkyl nitrites, 3 other compounds and 1 plant. In this review, we show our survey of the spread of new designer drugs in Japan, focusing especially on synthetic cannabinoids and cathinone derivatives. Also, the prevalence and legal status of these substances in other countries will be presented.
著者
内山 奈穂子 宮澤 法政 河村 麻衣子 花尻(木倉) 瑠理 合田 幸広
出版者
公益社団法人 日本薬学会
雑誌
YAKUGAKU ZASSHI (ISSN:00316903)
巻号頁・発行日
vol.130, no.2, pp.263-270, 2010-02-01 (Released:2010-02-01)
参考文献数
18
被引用文献数
14 16

Thirty-two psychotropic substances were listed as designated substances (Shitei-Yakubutsu, 31 compounds and 1 plant) in Japan by the Pharmaceutical Affairs Law in April 2007 for preventing the abuse of these substances. Subsequently, other psychoactive compounds were also added to this category, 40 substances (classified as 12 tryptamines, 17 phenethylamines, 3 piperazines, 6 alkyl nitrites, 1 diterpene and 1 plant) are controlled as designated substances as of July 2009. However, new designer drugs are still distributed in illegal drug market according to the results of our annual survey. This study presents the analysis of four newly distributed designer drugs detected from two products, which were purchased from October 2008 to February 2009 in Japan. As the results of NMR, GC-MS and LC-MS analyses, three phenethylamine derivertives, 1-(2-fluorophenyl)-N-methylpropan-2-amine (N-Me-2-FMP), 1-(2,5-dimethoxy-4-isopropylsulfanylphenyl)propan-2-amine (ALEPH-4) and 1-(2,5-dimethoxy-4-nitrophenyl)propan-2-amine (DON) and a tryptamine derivative, N-ethyl-5-methoxy-N-propyltryptamine (5-MeO-EPT), were detected. N-Me-2-FMP and 5-MeO-EPT were newly identified in this study. Additionally, ALEPH-4 and DON were found as novel illegal drugs distributed in Japan.
著者
緒方 潤 河村 麻衣子 袴塚 高志 花尻(木倉) 瑠理
出版者
公益社団法人 日本薬学会
雑誌
YAKUGAKU ZASSHI (ISSN:00316903)
巻号頁・発行日
vol.140, no.12, pp.1501-1508, 2020-12-01 (Released:2020-12-01)
参考文献数
18
被引用文献数
3

In Japan, mitragynine, 7-hydroxymitragynine and Mitragyna speciosa Korth. (M. speciosa, “Kratom”) were controlled as Designated Substances under the Pharmaceutical and Medical Device Act from March 2016. In this study, the origins of 16 Kratom products obtained from the illegal drug market in Japan were investigated by DNA analyses and LC-MS analyses. When the PCR-restriction fragment length polymorphism (RFLP) was performed using the restriction enzyme XmaI (as reported by Sukrong et al. to be able to distinguish M. speciosa), the same DNA fragment patterns were obtained from all 16 products. On the other hand, as a result of the identification of the plant species of each product by nucleotide sequence analyses, the sequences of M. speciosa were detected in only 14 products. Despite the facts that mitragynine and 7-hydroxymitragynine were detected also in the other two products by the LC-MS analyses, M. speciosa DNAs were not amplified from these products by the PCR. Moreover, the DNA amplicons of the other psychotropic plant (Mesembryanthemum sp., e.g. “Kanna”) were detected. This plant PCR amplicon has the restriction site for the XmaI at the same position of the M. speciosa PCR amplicon and it is difficult to distinguish “Kratom” and “Kanna” by the conventional PCR-RFLP. When the restriction enzyme XhoI was used simultaneously with the Xmal, the specific DNA fragment was only observed from the M. speciosa amplicon and it was possible to distinguish both species using this improved PCR-RFLP method. This method is useful to identify the origin of Kratom products distributed in the illegal drug market.