著者
山尾 文孝 佐々 健介 岩井 一彦 浅井 滋生
出版者
The Iron and Steel Institute of Japan
雑誌
鉄と鋼 (ISSN:00211575)
巻号頁・発行日
vol.83, no.1, pp.30-35, 1997-01-01 (Released:2009-06-19)
参考文献数
11
被引用文献数
33 41

The principle on separating inclusions in a molten metal by using a fixed alternating magnetic field has been confirmed through experiments with molten aluminium. The separating efficiency of inclusions is studied through experimental and analytical ways under different operating conditions. The mathematical model to predict the separating efficiency is developed and the efficiencies predicted by the model are compared with the experimental ones.A feasibility study on the application of an electromagnetic inclusion separation in a molten steel is performed. An operating non-dimensional parameter, Y ≡(ρfdp2Be2LtS) (μfμeWdt2) which characterizes an electromagnetic inclusion separation process is newly proposed.
著者
鷲見 郁宏 佐々 健介 浅井 滋生
出版者
一般社団法人 日本鉄鋼協会
雑誌
鉄と鋼 (ISSN:00211575)
巻号頁・発行日
vol.78, no.3, pp.447-454, 1992-03-01 (Released:2009-05-29)
参考文献数
11
被引用文献数
3

Being aimed to improve the surface quality of a continuously cast steel, a new electromagnetic casting method is proposed where the high frequency magnetic field is imposed on the initial stage of solidification from the outside of a mold. The magnetic pressure induced by the magnetic field provides the solidification taking place under the soft contacting pressure of molten metal with the mold, so called soft contacting solidification. Molten tin was cast by imposing magnetic field with 1.75, 3.75 and 15.4 kHz frequency in order to examine the applicability of the method to the cast of steel. It is found that this electromagnetic casting method has a potential to be applied to the cast of steel. The stronger intensity of magnetic field could provide the better surface quality of products in the way of reducing oscillation marks. However, the excess intensity of magnetic field caused the disturbance on meniscus inducing surface defects. The critical intensity of magnetic field at which the surface defects due to fluid disturbances at meniscus appeared increased with increasing the frequency of magnetic field. It is noticed that the effect of magnetic field on reduction of surface defects appears more significantly when mold oscillation was not applied than when the oscillation was applied.