著者
鍋島 啓太 渡邉 研斗 水野 淳太 岡崎 直観 乾 健太郎
出版者
一般社団法人 言語処理学会
雑誌
自然言語処理 (ISSN:13407619)
巻号頁・発行日
vol.20, no.3, pp.461-484, 2013-06-14 (Released:2013-09-14)
参考文献数
14
被引用文献数
1

東日本大震災では,「コスモ石油の爆発で有害物質の雨が降る」などの誤情報の拡散が問題となった.本研究の目的は,東本日大震災後 1 週間の全ツイートから誤情報を網羅的に抽出し,誤情報の拡散と訂正の過程を分析することである.本稿では,誤情報を訂正する表現(以下,訂正パターン)に着目し,誤情報を認識する手法を提案する.具体的には,訂正パターンを人手で整備し,訂正パターンにマッチするツイートを抽出する.次に,収集したツイートを内容の類似性に基づいてクラスタリングし,最後に,その中から誤情報を過不足なく説明する1文を選択する.実験では,誤情報を人手でまとめたウェブサイトを正解データとして,評価を行った.また,誤情報とその訂正情報の拡散状況を,時系列で可視化するシステムを構築した.本システムにより,誤情報の出現・普及,訂正情報の出現・普及の過程を分析できる.
著者
赤間 怜奈 渡邉 研斗 横井 祥 小林 颯介 乾 健太郎
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第32回全国大会(2018)
巻号頁・発行日
pp.1N203, 2018 (Released:2018-07-30)

本研究は,教師なし学習によりスタイル(言葉遣いや文体など)の類似性を捉えるを試みる初めての研究である. 本研究では「スタイル」の類似性を捉えるベクトル空間を構築するに当たり,「同一発話内に含まれる単語は同一のスタイルを持つ」という仮定を置く. この仮定に基づき,同一発話内の単語を予測できるようなベクトルを構成することで,スタイルの類似性を捉えた単語ベクトル空間を獲得する手法を提案する.我々が期待する単語ベクトル空間とは,(「意味」は近くとも)「スタイル」が大きく異なる``俺''と``私''は遠くに配置され,(「意味」は異なっているとしても)「スタイル」が似ている``俺''と``だぜ''が近くに配置されるような空間である. さらに本研究では,スタイルの類似性を包括的に定量評価する手法を提案し,そのための評価データセットを新たに作成する. 提案手法により獲得した単語ベクトルが,スタイルの類似性を捉えていることを定量的および定性的に示す.
著者
赤間 怜奈 渡邉 研斗 横井 祥 小林 颯介 乾 健太郎
出版者
人工知能学会
雑誌
2018年度人工知能学会全国大会(第32回)
巻号頁・発行日
2018-04-12

本研究は,教師なし学習によりスタイル(言葉遣いや文体など)の類似性を捉えるを試みる初めての研究である.本研究では「スタイル」の類似性を捉えるベクトル空間を構築するに当たり,「同一発話内に含まれる単語は同一のスタイルを持つ」という仮定を置く.この仮定に基づき,同一発話内の単語を予測できるようなベクトルを構成することで,スタイルの類似性を捉えた単語ベクトル空間を獲得する手法を提案する.我々が期待する単語ベクトル空間とは,(「意味」は近くとも)「スタイル」が大きく異なる``俺''と``私''は遠くに配置され,(「意味」は異なっているとしても)「スタイル」が似ている``俺''と``だぜ''が近くに配置されるような空間である.さらに本研究では,スタイルの類似性を包括的に定量評価する手法を提案し,そのための評価データセットを新たに作成する.提案手法により獲得した単語ベクトルが,スタイルの類似性を捉えていることを定量的および定性的に示す.
著者
渡邉 研斗 松林 優一郎 深山 覚 中野 倫靖 後藤 真孝 乾 健太郎
雑誌
研究報告音声言語情報処理(SLP) (ISSN:21888663)
巻号頁・発行日
vol.2017-SLP-116, no.16, pp.1-12, 2017-05-08

本研究では楽曲のメロディを考慮した歌詞の自動生成手法を提案する.人間の作詞現場においては,予め作曲されたメロディに対して歌いやすい歌詞を創作する 「曲先」 と呼ばれる方法が広く行われている.しかしながら,自動歌詞生成の既存手法の多くは,韻やシラブルに基づく生成手法を提案しているものの,メロディと歌詞の関係を考慮しておらず,メロディの区切りと単語の区切りが一致しないような不自然な歌詞を生成してしまう問題がある.本研究では,メロディの音符と歌詞の読みが対応づいたデータを用いて,メロディの音の長さ ・ 休符の位置 ・ 繰り返し構造などの特徴と歌詞の相関を詳しく分析し,その結果をもとにした自動歌詞生成モデルを構築する.結果として作成されたモデルにより,休符や長い音符付近で行や段落 (連) が区切れている自然な歌詞が自動生成された.