- 著者
-
松林 優一郎
岡崎 直観
辻井 潤一
- 出版者
- 一般社団法人 言語処理学会
- 雑誌
- 自然言語処理 (ISSN:13407619)
- 巻号頁・発行日
- vol.17, no.4, pp.4_59-4_89, 2010 (Released:2011-06-09)
- 参考文献数
- 26
FrameNet,PropBank といった意味タグ付きコーパスの出現とともに,機械学習の枠組みを利用した自動意味役割付与システムが数多く研究されてきた.しかし,これらのコーパスは個々のフレームに固有の意味役割を定義するため,コーパス中に低頻度,或いは未出現の意味役割が数多く存在し,効率的な学習を妨げている.本論文は,意味役割付与における意味役割の汎化問題を取り上げ,既存の汎化指標と新たに提案する指標を役割の分類精度を通して比較し,それぞれの特徴を探求する.また,複数の汎化指標を同時に利用する分類モデルが自動意味役割付与の精度を向上させることを示す.実験では,FrameNet において全体の精度で 19.16% のエラー削減,F1 マクロ平均で 7.42% の向上を,PropBank において全体の精度で 24.07% のエラー削減,未知動詞に対するテストで 26.39% のエラー削減を達成した.