- 著者
-
玉田 寛尚
林 朗
末松 伸朗
岩田 一貴
- 出版者
- The Institute of Electronics, Information and Communication Engineers
- 雑誌
- 電子情報通信学会論文誌 D (ISSN:18804535)
- 巻号頁・発行日
- vol.J93-D, no.12, pp.2610-2619, 2010-12-01
HMM(Hidden Markov Model)は時系列データの生成モデルとしてよく知られている.しかし,近年,HMMに対応する識別モデルであるCRF(Conditional Random Field)が提案され,多くの応用問題で有効性が示されている.HHMM(Hierarchical HMM)はHMMを一般化した生成モデルであり,時系列データの状態を階層的に表現する.我々はHHMMに対応する識別モデルとして,HHCRF(Hierarchical Hidden CRF,階層隠れCRF)を提案する.HHMMとHHCRFの性能比較のために,生成モデルと識別モデルの性質を考慮しつつ人工データ実験を行い,パラメータ学習時の訓練集合サイズが大きくなり,かつデータ生成源が非一次マルコフモデルに近づくにつれて,状態系列推定におけるHHCRFの性能がHHMMのそれよりも,より高くなることを示す.