著者
平野 光河 田頭 秀章 福永 浩司
出版者
公益社団法人 日本薬学会
雑誌
YAKUGAKU ZASSHI (ISSN:00316903)
巻号頁・発行日
vol.134, no.6, pp.707-713, 2014 (Released:2014-06-01)
参考文献数
55
被引用文献数
7 10

We previously reported that the sigma-1 receptor is down-regulated in cardiomyocytes following heart failure in transverse aortic constriction (TAC) mice. In this review, we summarized the anti-hypertrophic action of selective sigma-1 receptor agonist, SA4503 in the hypertrophied cultured cardiomyocytes and discussed its possible mechanism of cardioprotection. Treatment with SA4503 (0.1-1 μM) dose-dependently inhibited hypertrophy in cultured cardiomyocytes induced by angiotensin II (Ang II). We also found that α1 receptor stimulation by phenylephrine (PE) promotes ATP production through IP3 receptor-mediated Ca2+ mobilization into mitochondria in cultured cardiomyocytes. Interestingly, the PE-induced ATP production was impaired after Ang II-induced hypertrophy and SA4503 treatment largely restored PE-induced ATP production. The impaired PE-induced ATP production was associated with reduced mitochondrial size. The SA4503 treatment completely restored mitochondrial size concomitant with restored ATP production. These effects were blocked by sigma-1 receptor antagonist, NE-100 and sigma-1 receptor siRNA. We also confirmed that chronic SA4503 administration also significantly attenuates myocardial hypertrophy and restores ATP production in transverse aortic constriction mice. Taken together, sigma-1 receptor stimulation with selective agonist SA4503 ameliorates cardiac hypertrophy and dysfunction by restoring both mitochondrial Ca2+ mobilization and ATP production via sigma-1 receptor stimulation. Sigma-1 receptor stimulation represents a new therapeutic strategy to rescue heart from hypertrophic dysfunction in heart failure.
著者
田頭 秀章 福永 浩司
出版者
公益社団法人 日本薬学会
雑誌
YAKUGAKU ZASSHI (ISSN:00316903)
巻号頁・発行日
vol.132, no.2, pp.167-172, 2012-02-01 (Released:2012-02-01)
参考文献数
32
被引用文献数
2 6

Selective serotonin reuptake inhibitors (SSRIs) are known to reduce post-myocardial infarction (MI)-induced morbidity and mortality. However, the molecular mechanism underlying SSRI-induced cardioprotection remains unclear. Here, we investigated the role of sigma-1 receptor (Sig-1R) stimulation with fluvoxamine on myocardial hypertrophy and cardioprotection. Male ICR mice were subjected to transverse aortic constriction (TAC) in the cardiac aortic arch. To confirm the cardioprotective role of Sig-1R stimulation by fluvoxamine, we treated mice with fluvoxamine (0.5 or 1 mg/kg) orally once a day for 4 weeks after onset of aortic banding. Interestingly, in untreated mice, Sig-1R expression in the left ventricle (LV) markedly decreased over 4 weeks with increased hypertrophy. By contrast, fluvoxamine administration significantly attenuated TAC-induced myocardial hypertrophy concomitant with recovery of Sig-1R expression in LV. Fluvoxamine also attenuated hypertrophy-induced impaired LV fractional shortening. The fluvoxamine cardioprotective effect was nullified by treatment with a Sig-1R antagonist, NE-100 (1 mg/kg). Importantly, another SSRI with very low affinity for Sig-1R, paroxetine, did not exhibit antihypertrophic effects in TAC mice and in cultured cardiomyocyte treated with angiotensin II. Fluvoxamine treatment significantly restored TAC-induced impaired Akt and eNOS phosphorylation in LV. Our findings suggest that fluvoxamine protects heart against TAC-induced cardiac dysfunction via upregulation of Sig-1R and stimulation of Sig-1R-mediated Akt-eNOS signaling in mice. This is the first report of a potential role of Sig-1R stimulation by fluvoxamine in preventing cardiac hypertrophy and myocardial injury in TAC mice.