著者
森川 幾太郎 菊池 久人
出版者
山形大学
雑誌
山形大学紀要. 教育科学 = Bulletin of Yamagata University. Educational Science
巻号頁・発行日
vol.12, no.4, pp.13(381)-45(413), 2001-02-15

概要 : この論攷は,ニ部で構成され,その第一部を第一筆者が,第二部を第二筆者がそれぞれ担当する。第一部では,森川が過去において行った提案と対比しながら,D'AmbrosioやP.Gerdesらが提唱する民族数学の特徴を明らかにする。例えば,彼らは,図形や数に関わる話題をその教育素材として取り上げても,物理分野や量を主体にした算術分野の話題を取り上げていないことを述べる。第二部では,山形県内に現存する算額の問題を原問題に,生徒がその発展問題作りに取り組んだ実践の概要と生徒の作った問題のいくつかを紹介する。 こうした民族文化の伝統を生かした生徒主体の問題作りに関わる展開も「民族数学」の提案には見ることができない。 Summary : In the first part, we point out some characteristics things in the ethnomathematic; 1) We can see often the geometrical things in the papers written representational persons to the branch. It would mean that they analyzed the memorial things or heritages being seen in present times from mathematical points. And then, we know that many persons tried to present the themes as mathematics education by analyzing many traditional geometrical constructions from previous days whether they had the recognitions to the ethnomathematics or not. We had the papers to analyze the skills to construct the traditional Japanese constructions as mathematics in junior high school students, also without a recognition to the ethnomathematics. 2) We have not an experience to see the papers to analyze the phenomena often met in the each area; To analyze the phenomena, we need the some methods such as measuring the many quantities, drawing the graphs to them or finding the formulas. To measure the many quantities, we must prepare the tools.