著者
藤田 禎三
出版者
金原一郎記念医学医療振興財団
巻号頁・発行日
pp.514-515, 2006-10-15

免疫系の機能を簡潔にいい表すと,異物(非自己)を識別する能力とそれを排除する能力である。高等動物における免疫系は,初期感染防御において重要な働きをする自然免疫(innate immunity)と,特異的な認識機構とその記憶に特徴をもつ獲得免疫(acquired immunity)に分けることができる。 抗体やリンパ球や主要組織適合性遺伝子複合体(MHC)などの獲得免疫の基本形と補体古典的経路は,サメやエイに代表される軟骨魚類で完成したと考えられている。最も原始的な脊椎動物の円口類(ヤツメウナギなど)と多くの無脊椎動物には獲得免疫は存在せず,パターン認識分子が自己と非自己を識別し,自然免疫に機能していると考えられる。一方,補体蛋白の中で最も重要な働きをするC3は,最近サンゴやカブトガニなどの種々の無脊椎動物で発見されており,補体の起源は,当初考えられていたよりかなり古いことが推定される。原索動物のマボヤにおいてはレクチンを認識分子として機能するレクチン経路の原型の存在が確認されている。この原型をもとに,遺伝子重複とエクソンシャフリングなどを重ね,哺乳類に存在するレクチン経路や古典的経路に進化したものと思われる。補体系の活性化に働くマンノース結合レクチン(mannose-binding lectin;MBL)とフィコリンは,自然免疫において生体に侵入した病原体を非自己と認識するパターン認識分子である。そして,MBLとフィコリンはコラーゲン構造をもち,獲得免疫で働く補体古典的経路のC1q分子とは類縁関係にあると考えられている1)。
著者
藤田 禎三 ターナー マルコム リード ケネス エゼコビッツ アラン 水落 次男 小林 邦彦 松下 操 TURNER Malcolm w REID Kenneth b m
出版者
福島県立医科大学
雑誌
国際学術研究
巻号頁・発行日
1994

1).マンノース結合蛋白(MBP)はマン-スやN-アセチルグルコサミンに結合特異性を持つ血清レクチンの一つで、補体活性化能が有り、生体防御上重要な役割を演じている。MBPによる補体活性化のメカニズムに関しては次の2つの説が提唱されている。一つは、補体第一成分C1と同様にMBPはC4,C2の分解にプロテアーゼ成分としてC1の亜成分C1rとC1sを用いるとする考え方である。これはイギリスのReid博士らのMBP-C1r/C1s複合体が形成し得ることを示した再構成実験に基づく。一方,我々の連休からヒト血清MBP画分からC4,C2分解活性能を有するプロテアーゼMASP(MBP-associteel sereine pntease)が単離されたことより、MBPはMBP-MASP複合体を形成して働いているとする見方である。生体的でMBPによる補体活性化(レクチン経路)のメカニズムを解明する上で、MBPとC1r/C1s,MBPとMASPなどの結合性が重要な手がかりとなる。そこで、MBP-MASP,C1の亜成分間の結合性を結合定数の測定により検討した。Reid博士らの調製したC1と我々の調製したMBP-MASPを材料として蛋白成分間の結合状態を調べる装置であるBiacoreを用いてMBP-MASP,MBP-C1r/C1s,C1g-MASP,C1q-C1r/C1s各々の結合定数を求めたところ、これらの値はほぼ同程度てあることが判明した。血清中よりMBP-MASP,C1q-C1r/C1sのみ得られることを考慮すると以上の結果は、これら2つの複合体は何らかの制御機構を受けてin vivoで形成される可能性を示唆している。2).MBP欠損患者が高頻度(白人で5-7%)で知られており、幼児における易感染性との関連が報告されている。これらMBP欠損患者のMBP遺伝子では塩基230の点突然変異でコドン54がGGC→GACに変化していることが明らかにされている。これはMBP蛋白のグリシン(G)がアスパラギン酸(D)への置換につながる変異であり、この結果,変異MBPは合成されても生体内で分解が速いものと推定されている。アメリカのEzekouitg博士らは正常タイプのMBP(MBPG)と変異MBP(MBPD)のリコンビナント体を作製して両MBPの性状を検討した。その結果MBPGがヒト血清中の補体活性化能を示したのに対して、MBPDには本活性が損われていた。そこで,このような活性の違いの原因を解明する目的でMBPとMASPとの反応性に着目して検討を行った。その結果、EZRkouitg博士の調製したリコンビナントMBPのうち、MBPGはヒト血清MBPと同様にMASP共存下、補体成分C4,C2分解を伴なう補体活性化能を示したが、MBPDにはその活性が見られなかった。更に、MBPとMASPとの結合性を検討したところ、MBPGはMASPと結合したのに対して、MBPDは結合しなかった。以上の結果より、MBPDに補体活性化能が損なわれている原因として、MASPとの結合活性がないことが明らかとなった。(投稿中)。3).リウマチ患者血清中のIgGの多くは、非還元末端のガラクトースが欠損して次のN-アゼチルグルコサミン残基が末端に位置している異常な糖鎖構造をしている。MBPはN-アセチルグルコサミンに親和性を持つので、このガラクトース欠損IgGにMBPが結合すると補体活性化をおこし、それがリウマチの病態と関連がある可能性が考えられる。そこで、リウマチ患者血清IgGへのMBPの結合性を調べたところ、正常人のIgGに比べて、より多くのMBPが結合することがわかった。更に、このMBP結合性IgGをプロテインGカラム及びMBPカラムを用いて単離後、MBP-MASPによる補体活性化能をC4消費を指標に調べたところ、明らかな活性化を示した。また、このIgGはIgMタイプのリウマチ因子と複合体を形成していた。これらの結果より、リウマチ患者血清中の異常な糖鎖構造をもつIgGを含大複合体がMBP-MASPを介したレクチン経路の活性化を起すことが明らかとなった。